题目:Codeforces Round 962 (Div. 3) E. Decode
题意 :
如果没读错的话,大概就是要我们求 (长度是
n
n
n的) 原字符串中每一个区间
[
l
,
r
]
[l,r]
[l,r]
(
1
≤
l
≤
r
≤
n
)
(1 \leq l \leq r \leq n)
(1≤l≤r≤n),这个区间
[
l
,
r
]
[l,r]
[l,r]中有多少个子区间
[
x
,
y
]
[x,y]
[x,y]
(
1
≤
x
≤
y
≤
n
)
(1 \leq x \leq y \leq n)
(1≤x≤y≤n)中
0
0
0和
1
1
1的数量相同
简单说:要求的就是区间
[
l
,
r
]
[l,r]
[l,r]中子区间
[
x
,
y
]
[x,y]
[x,y]的数量
m
o
d
mod
mod
P
P
P
(
P
=
1
0
9
+
7
)
(P= 10^9 + 7)
(P=109+7),每一个不同的区间
[
l
,
r
]
[l,r]
[l,r]中的区间
[
x
,
y
]
[x,y]
[x,y]都是不同的,也就是可以重复计算一下
例:
11000000111
用思路中的算法得到的过程就是
1
⋅
8
+
2
⋅
9
+
6
⋅
1
+
7
⋅
2
+
8
⋅
3
=
8
+
18
+
6
+
14
+
24
=
70
1\cdot8+2\cdot9+6\cdot1+7\cdot2+8\cdot3 = 8+18+6+14+24=70
1⋅8+2⋅9+6⋅1+7⋅2+8⋅3=8+18+6+14+24=70
输入:
4
0000
01010101
1100111001
11000000111
输出:
0
130
147
70
思路:
此时我的小脑瓜已经忽略复杂度想到了,要从子区间算大区间,算子区间可以出现在的大区间的个数
一个子区间可以出现在左右端点大于等于自己的区间中
那么在子区间的左右两边分别选一个点作为左右端点,就可以枚举到所有的大区间了
那么对于每个子区间
[
x
,
y
]
[x,y]
[x,y]会出现在大区间中的数量就是小小的组合数
C
x
1
⋅
C
n
−
y
+
1
1
C^{1}_{x}\cdot C^{1}_{n-y+1}
Cx1⋅Cn−y+11
最后答案也就是枚举子区间加上
x
⋅
(
n
−
y
+
1
)
x\cdot (n-y+1)
x⋅(n−y+1)
子区间的求法:对于要一个区间1和0出现次数相等的情况,可以使用前缀和出现1这个位置就+1,出现0这个位置就-1
这样我们就可以找到两个点他们的前缀和都相等,也就是说这两个点中间的值都抵消了,把前缀和值相等的点全部和坐标一起存起来一个数组中
因为是按顺序求的前缀和,那么按顺序取出一前一后就形成了一个子区间,然后可以算出这个子区间出现的次数,(这个步骤时间复杂度简直不要太大)
子区间可是真的多呀,直接TLE5了,实现的代码也是十分丑陋
所以看到别的大佬的美丽写法
首先枚举子区间这个步骤实在太慢,再第一重循环枚举左端点的时候,我们都需要拿右端点的下标处理一下以后乘一下左端点的下标然后把右端点枚举完再加起来
实际列出式子合并得到的就是 处理后的右端点的和乘左端点的下标
也就是我们可以求出每个前缀和的值相同的点的处理后的下标的值的后缀和,然后枚举左端点直接乘这个后缀和
这样的话时间复杂度就合法了
代码中从后往前枚举,这样的话可以先算答案,然后把经过的点下标处理一下存到一个sum数组中,也就是后缀和,sum数组的索引就是前缀和的值(找到别的大佬的代码的写法)
code总是多种多样的
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 2e5 + 10;
const int P = 1000000007;
int pre[N];
vector<int> v1[N * 2];
void solve() {
string a; cin >> a;
a = ' ' + a;
for(int i = 1; i <= a.size() - 1 + N ; i ++) v1[i].clear();
for(int i = 1 ; i <= a.size() - 1 ; i ++)
{
pre[i] = pre[i - 1] + (a[i] == '1' ? 1 : -1);// 前缀和为0的时候才算出来
// std::cout << pre[i] << " ";
}
// std::cout << "\n";
for(int i = 0 ; i <= a.size() - 1 ; i ++)
{
v1[pre[i] + N].push_back(i);
}
int ans = 0;
map<int, int> sum;
int n = a.size() - 1;
for(int i = n ; i >= 0 ; i --)// 遍历前缀和数组
{
if(v1[pre[i] + N].size() >= 2)// 至少有一队的话
{
ans = (ans + (i + 1) * sum[pre[i]] % P ) % P;
// std::cout << pre[i] << " " << sum[pre[i]] << "\n";
}
sum[pre[i]] = (sum[pre[i]] + (n - i + 1) ) % P;
}
std::cout << ans << endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}