Hello 算法介绍(文末有资源)

一、介绍

《Hello 算法》在GitHub上持续火爆,今年Star数已达80k,项目作者靳宇栋(@krahets),前华为高级算法工程师,上海交通大学硕士,西安交通大学本科,专注于 3D 重建与渲染、3D 生成算法的研究。喜欢在开源社区分享知识,他的教程帮助了很多学习者入门算法,也被很多人称为算法K神。学习《Hello算法》,对机器学习(Machine Learning, ML)的学习是非常有帮助的。

文中示例代码:

def bubble_sort(nums: list[int]):
    """冒泡排序"""
    n = len(nums)
    # 外循环:未排序区间为 [0, i]
    for i in range(n - 1, 0, -1):
        # 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
        for j in range(i):
            if nums[j] > nums[j + 1]:
                # 交换 nums[j] 与 nums[j + 1]
                nums[j], nums[j + 1] = nums[j + 1], nums[j]

示例介绍:

1. ‌基础算法与数据结构的重要性‌

1)编程能力提升‌:机器学习需要扎实的编程实现能力(尤其是Python)。《Hello算法》中的代码示例和算法实现训练能帮助你更高效地编写和调试代码。

2)数据结构理解‌:ML中常涉及数组、链表、树(如决策树)、图(如神经网络中的计算图)等结构。理解这些结构如何存储和操作数据,对优化模型性能很重要。

3‌)算法思维培养‌:学习算法能训练逻辑思维,帮助你分析问题的时间复杂度和空间复杂度,这对优化机器学习模型(如减少训练时间、处理大规模数据)很有用。

2. ‌直接相关的算法领域‌

1)排序与搜索‌:数据预处理时常用到排序(如样本采样)和搜索(如最近邻算法)。
‌2)动态规划与贪心算法‌:某些优化问题(如强化学习中的策略选择)会用到这类思想。
‌3)图算法‌:图神经网络(GNN)和推荐系统中常涉及图的遍历和特征提取。

3. ‌机器学习还需要哪些额外知识?‌

算法是ML的基础之一,但机器学习还需要以下核心内容:

1‌)数学基础‌:线性代数(矩阵运算)、概率统计(贝叶斯理论)、微积分(梯度下降)。
‌2)机器学习理论‌:监督/无监督学习、损失函数、过拟合与正则化等。
‌3)工具框架‌:如TensorFlow、PyTorch、Scikit-learn的使用。
‌4)领域知识‌:根据应用场景(如CV、NLP)学习特定模型(CNN、Transformer等)。

4. ‌如何高效结合两者学习?‌

1‌)初级阶段‌:先掌握《Hello算法》中的基础,同时学习Python和数学基础。
‌2)中级阶段‌:通过ML实战项目(如Kaggle竞赛)应用算法知识,例如用哈希表优化特征存储、用树结构实现决策树。
‌3)高级阶段‌:深入研究ML中的优化算法(如梯度下降、遗传算法),此时算法书中的复杂度分析能力会发挥作用。

5. ‌是否建议优先学习这本书?‌

如果你是初学者‌:建议先学《Hello算法》,打好编程和算法基础,再过渡到ML
‌如果你已有编程基础‌:可跳过部分内容,直接学习ML,但遇到工程问题时回头补算法知识(如模型部署时的性能优化)。

二、总结

《Hello算法》能帮助你建立扎实的编程和算法基础,这对机器学习工程实现和优化至关重要,但机器学习还需要结合数学、统计学等领域知识。建议将算法学习作为长期基础,同时逐步深入ML核心理论,并通过项目实践融会贯通。

《Hello 算法——python语言》2023年 PDF下载

链接: https://pan.baidu.com/s/1ryH7D89i6mVVKDDCV0MjtA?pwd=h99b 提取码: h99b

网页版学习链接:Hello 算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穿梭的编织者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值