斯坦福大学课程 机器学习2 模型与代价函数

这篇博客详细介绍了机器学习中模型表示和代价函数的概念。模型表示通过训练样本(x(i),y(i))构建学习函数h,用于预测输出。代价函数用于评估预测函数的准确性,通常采用平方差作为表达形式。文章深入探讨了代价函数的直观理解,包括二维和三维的几何表示,以及如何通过最小化代价函数找到最佳模型参数。" 126694726,15278779,Java毕业设计:学生生活管理系统,"['Java', 'Mybatis', '前端开发', '数据库', 'Web开发']
摘要由CSDN通过智能技术生成

模型表示

我们使用 x ( i ) x^{(i)} x(i)表示输入变量,使用 y ( i ) y^{(i)} y(i)表示输出或目标变量。将( x ( i ) x^{(i)} x(i), y ( i ) y^{(i)} y(i))称为训练样本。我们称一列训练样本( x ( i ) x^{(i)} x(i), y ( i ) y^{(i)} y(i));i=1,…,m为训练集。其中,i是表示一个训练集样本的索引,不是变量的幂次方。

针对监督学习问题的稍微正式一些的描述是,我们将给定训练集喂给学习算法,从而得到学习函数h:X -> Y,所以h(x)就是预测输出值y的预测器。该过程如下图:
Alt

代价函数

我们使用代价函数来对预测函数的准确性进行评估。评估函数使用平方差进行表达。我们使用线性预测函数举例,假设预测函数为 h(x) = θ 0 \theta_{0} θ0 + θ 1 \theta_{1} θ1* x, 其代价函数为 Alt
拆解该表达式,即为 1 2 x ˉ \frac{1}{2}\bar{x} 21xˉ,其中 x ˉ \bar{x} xˉ代表了 h ( x i ) − y i h(x_{i}) - y_{i} h(xi)yi的平方,即预测值与实际值差的平方。

该函数也可称之为"Squared error function" 或者是"Mean squared error"。这里的 1 2 \frac{1}{2} 21 是为了便于计算梯度下降, 也为了减少导数项。下面的图概述了代价函数:
Alt

代价函数之直观认识I

当我们尝试从视觉角度考虑代价函数,训练的数据集将分布在x-y坐标系上。然后我们用一条线连接所有分布在x-y坐标系中的点。

我们假设 θ 0 \theta_{0} θ0为0,预测函数变为 h(x) = θ 1 \theta_{1} θ1* x,那么其在坐标系中将是一条穿过(0,0)坐标的任意一条线。其代价函数将是一条二维抛物线,如下图所示。

我们的目的是得到一条最可能的线。这条线将是点到线的最小距离的平方差。这条线将穿过训练集中的所有点。在这样一个场景下, J ( θ 0 , θ 1 ) J(\theta_{0},\theta_{1}) J(θ0,θ1)的值为0。下图展示了为0的代价函数所在的理想位置。
Alt
θ 1 \theta_{1} θ1 = 1时,我们得到一个斜率为1的穿过所有训练数据点的模型。当 θ 1 \theta_{1} θ1 = 0.5时,我们看到到达数据集点的垂直距离增大了。
Alt
这使得代价函数值增长到了0.58。画出几个其他的点后,形成了下图:
在这里插入图片描述
因此我们的目标是尽量缩小代价函数的值,本例中, θ 1 \theta_{1} θ1 = 1是全局最小。

代价函数之直观认识II

θ 0 \theta_{0} θ0不为0时,预测函数变为 h(x) = θ 0 \theta_{0} θ0 + θ 1 \theta_{1} θ1* x,那么其在坐标系中将是一条不穿过(0,0)坐标的任意一条线。如下图左侧图所示。而其代价函数将是一个三维的抛物椎体。

轮廓图有大量轮廓线组成。同一轮廓线上的任意两点,代价函数值永远相同。如下列右侧图所示:
在这里插入图片描述
选取任何颜色的线,并在该线上取任一点,我们都将得到相同的代价函数值。例如上图中绿色线上的三个绿色点,都拥有相同的 J ( θ 0 , θ 1 ) J(\theta_{0},\theta_{1}) J(θ0,θ1)值。轮廓线上的三点,所对应的预测函数,在坐标系中如上方左图所示。另外在轮廓线中随机取一点,可得 θ 0 \theta_{0} θ0为360, θ 1 \theta_{1} θ1为0,则该预测函数在坐标系中如下方左图所示。
在这里插入图片描述
θ 0 \theta_{0} θ0取值360, θ 1 \theta_{1} θ1取值0时, J ( θ 0 , θ 1 ) J(\theta_{0},\theta_{1}) J(θ0,θ1)的值更靠近中心,但依然存在误差。轻微的转动预测函数使得结果更逼近数据集。
在这里插入图片描述
如上图所示,我们尽量的最小化代价函数,得到 θ 0 \theta_{0} θ0为250, θ 1 \theta_{1} θ1为0.12,画出该点,几乎可以将该点放入轮廓图的最内圈。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值