D. Cyclic MEX

For an array a a a, define its cost as ∑ i = 1 n mex ⁡ † ( [ a 1 , a 2 , … , a i ] ) \sum_{i=1}^{n} \operatorname{mex} ^\dagger ([a_1,a_2,\ldots,a_i]) i=1nmex([a1,a2,,ai]).

You are given a permutation ‡ ^\ddagger p p p of the set { 0 , 1 , 2 , … , n − 1 } \{0,1,2,\ldots,n-1\} {0,1,2,,n1}. Find the maximum cost across all cyclic shifts of p p p.

† mex ⁡ ( [ b 1 , b 2 , … , b m ] ) ^\dagger\operatorname{mex}([b_1,b_2,\ldots,b_m]) mex([b1,b2,,bm]) is the smallest non-negative integer x x x such that x x x does not occur among b 1 , b 2 , … , b m b_1,b_2,\ldots,b_m b1,b2,,bm.

‡ ^\ddagger A permutation of the set { 0 , 1 , 2 , . . . , n − 1 } \{0,1,2,...,n-1\} {0,1,2,...,n1} is an array consisting of n n n distinct integers from 0 0 0 to n − 1 n-1 n1 in arbitrary order. For example, [ 1 , 2 , 0 , 4 , 3 ] [1,2,0,4,3] [1,2,0,4,3] is a permutation, but [ 0 , 1 , 1 ] [0,1,1] [0,1,1] is not a permutation ( 1 1 1 appears twice in the array), and [ 0 , 2 , 3 ] [0,2,3] [0,2,3] is also not a permutation ( n = 3 n=3 n=3 but there is 3 3 3 in the array).
Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 5 1 \le t \le 10^5 1t105) — the number of test cases. The description of the test cases follows.

The first line of each test case contains a single integer n n n ( 1 ≤ n ≤ 1 0 6 1 \le n \le 10^6 1n106) — the length of the permutation p p p.

The second line of each test case contain n n n distinct integers p 1 , p 2 , … , p n p_1, p_2, \ldots, p_n p1,p2,,pn (KaTeX parse error: Expected 'EOF', got '&' at position 11: 0 \le p_i &̲lt; n) — the elements of the permutation p p p.

It is guaranteed that sum of n n n over all test cases does not exceed 1 0 6 10^6 106.
Output

For each test case, output a single integer — the maximum cost across all cyclic shifts of p p p.

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> PII;
const int N = 1e6+10;
LL a[N];
bool vis[N];
void slove()
{
    int n;
    cin>>n;
    for(int i=0;i<n;i++)cin>>a[i];
    memset(vis,0,n + 10);
    LL s=0;
    deque<PII> q;
    for(LL i=0,j=0;i<n;i++)
    {
        vis[a[i]]=true;
        while(vis[j])j++;
        q.push_back({j,1});
        s+=j;
    }
    LL ret=0;
    for(int i=0;i<n;i++)
    {
        s-=q.front().first;
        if(--q.front().second==0)q.pop_front();
        LL cnt=0;
        while(!q.empty()&&q.back().first>a[i])
        {
            s-=q.back().first*q.back().second;
            cnt+=q.back().second;
            q.pop_back();
        }
        s+=a[i]*cnt+n;
        q.push_back({a[i],cnt});
        q.push_back({n,1});
        ret=max(ret,s);
    }
    cout<<ret<<endl;
}
int main()
{
    int t;
    cin>>t;
    while(t--)slove();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值