题目链接:Problem - D - Codeforces
题意
一个序列的mex是这个序列中最小的从零开始为出现的数字。现在要求序列p,序列p保证只会出现0~n-1的数字各自一次,要求类似{p1,..pn},{p2..pn,p1},{p3..pn,p1,p2}.的序列中,子序列的mex和最大是多少,子序列应该形如{p1},{p1,p2},{p1,p2,...pn}的mex和。
思路
考虑当第一个数字移动到后面的时候会出现的情况,子序列中mex大于这个数字的将会因为这个数字的缺失而变成这个数字,子序列中mex小于这个数字的不受影响,这个数字从后加入数列,数列的mex应该是n。
所以每一遍的操作就是统计后面各个mex的数量,对于后面每个mex大于这个数字的操作是从答案中减去mex*mexcount,就是后面子序列会出现大于x的mex的情况总和,然后加上变成这个数字的总和。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5+7;
const int mod = 998244353;
int n;
void solve()
{
cin>>n;
vector<int> a(n+1);
for(int i=1;i<=n;i++) cin>>a[i];
vector<int> book(n+1);
deque<pair<int,ll> > dq;
ll mex=0,sum=0;
for(int i=1;i<=n;i++){
book[a[i]]++;
while(book[mex]) mex++;
dq.push_back({mex,1});
sum+=mex;
}
ll ans=sum;
for(int i=1;i<n;i++){
pair<int,ll> now={a[i],0};
sum-=dq.front().first;
dq.front().second--;
if(dq.front().second==0){
dq.pop_front();
}
while(!dq.empty()&&dq.back().first>=a[i]){
sum-=dq.back().first*dq.back().second;
now.second+=dq.back().second;
dq.pop_back();
}
dq.push_back(now);
sum=sum+now.first*now.second;
dq.push_back({n,1});
sum+=n;
ans=max(ans,sum);
}
cout<<ans<<'\n';
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
//cout<<('m'-'n')<<endl;
int t;
//t=1;
cin>>t;
while(t--){
solve();
}
return 0;
}
ps:思路是看题解后才想出来的