- 博客(15)
- 收藏
- 关注
原创 Datawhale AI 春训营:光伏功率预测竞赛中的数据处理与建模经验
在LightGBM中,通过应用此损失函数。数据一致性:训练和测试数据的特征必须完全一致,任何特征缺失都会导致模型预测失败。时间序列处理:时序数据的插值、滞后特征和交叉验证需要特别注意,避免数据泄漏。调试技巧:打印特征列、数据长度等信息是定位问题的利器。提交格式:严格按照比赛要求检查输出文件的行数和列名,避免低级错误。虽然过程中踩了不少坑,但每解决一个问题都让我对数据处理和建模有了更深的理解。如果你也在参加类似比赛,欢迎留言交流经验!也期待大家在评论区分享自己的光伏预测技巧~附:完整代码。
2025-04-19 16:04:16
904
1
原创 LLM学习日志2025.3.6(下)
上午学习了LLM的三个主流架构 以及RLHF 的流程,下午 学习一下北京大学的deepseek文档 ,关于 提示词工程及相关的 应用前面的知识基本上都是提示技巧,对我而言 ,就这个反向pua 也就是 让 其自己评估自己的回答不断精进 这一点可以采用。突然想到我的 md 文档要进行上传, 但是我的图片不会跟着上传, 我应该做一个图库了ok 已经完全解决了 ,采用的github 作为仓库,整个过程还是挺顺利的这下面是从grok 那里得到的步骤。
2025-03-06 17:43:53
1112
原创 LLM学习日志 2025.3.6
核心目标:自回归建模(生成)、掩码建模(理解)、序列到序列(转换)。趋势:从单一预训练目标转向多阶段优化(预训练→指令微调→RLHF)。面试重点:理解不同目标的原理、优缺点,并能结合实际模型(如GPT vs BERT)对比分析。总结来说,这一部分其实和上一部分有些重复。根据三种不同 的主流架构 ,训练的目标也不一样,这也决定了模型的训练方式不一样。如Encoder only 关注于 上下文的理解 ,因此 关注的目标是 文本理解 ,也就是掩码语言建模。
2025-03-06 11:08:39
655
原创 快速幂的学习与反思
最开始的思路为高精度,但是后来一想,若按高精度乘法进行,时间复杂度就要爆炸(再多看一眼就要爆炸)。因此一眼快速幂高精度。但是仔细一想,所有的运算结果都要对10007取模,好像也用不到高精度,只需要对利用数组存一下y就可以了。:这里我们和传统的快速幂稍有不同,但是借用了快速幂的思路。传统快速幂使用的2进制的,base = base^2,为了方便我们每次取y的一位拿来计算,我们可以将其更改为十进制的。base,base10,base100...等等进行计算。
2022-10-11 08:53:14
140
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人