- 博客(6)
- 收藏
- 关注
原创 “Datawhale X 魔搭 AI夏令营” task3
LoRA(Low-Rank Adaptation)微调是一种用于调整大型预训练模型的高效微调技术。这种方法主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。
2024-08-17 19:56:11 768
原创 “Datawhale X 魔搭 AI夏令营” task2
AIGC主要依赖于以下几种关键技术:深度学习: 通过神经网络模型(如Transformer、GPT系列、BERT等)进行大规模数据的学习和训练,使得模型能够理解和生成高质量的文本、语音、图像等。自然语言处理(NLP): 对于文本内容的生成,涉及文本理解、语义分析、文本生成、对话系统等技术。例如,基于预训练语言模型(如通义千问、文心一言、星火大模型、扣子、ChatGPT等)可以生成连贯、有逻辑的文章、故事、诗歌甚至代码。
2024-08-14 15:39:35 348
原创 “Datawhale X 魔搭 AI夏令营” task1
AI,就是人工智能。它的目标是让机器能够像人一样有智能,能够看、听、说、想、做。要实现这个目标,AI需要用到三个重要的技术:深度学习、神经网络和生成式对抗网络(GAN)。神经网络神经网络就是模仿人脑的结构,用一些小点(节点)和线(链接)来连接起来,形成一个复杂的网络。这些小点就像我们大脑里的神经元,可以接收和传递信息;这些线就像我们大脑里的神经纤维,可以控制信息的流动。深度学习深度学习就是让神经网络变得更深更强。
2024-08-10 20:13:01 252
原创 #Datawhale AI夏令营# task3 上分
特征是数据中抽取出来的对结果预测有用的信息。特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。(1)特征工程是将原始数据转化为特征,能更好表示预测模型处理的实际问题,提升对于未知数据预测的准确性。(2)更好的特征意味着更强的灵活度、更好的特征意味着只需要用简单模型、更好的特征意味着更好的结果。
2024-08-03 19:26:17 301
原创 #Datawhale AI夏令营#Rnn特征模型的详解 task2
循环神经网络是一种对序列数据有较强的处理能力的网络。在网络模型中不同部分进行权值共享使得模型可以扩展到不同样式的样本,比如CNN网络中一个确定好的卷积核模板,几乎可以处理任何大小的图片。将图片中分成多个区域,使用同样的卷积核对每一个区域进行处理,最后可以获得非常好的处理结果。同样的,循环网络使用类似的模块(形式上相似)对整个序列进行处理,可以将很长的序列进行泛化,得到需要的结果。RNN的目的就是用来处理序列数据的。
2024-07-31 16:20:07 682
原创 #Datawhale AI夏令营# isiRNA生命科学方向 之 task(1) ~[BaseLine原理与分析] + [赛题解析]
其中小干扰RNA(SiRNA)是RNAi机制的主要作用分子SiRNA相关现象及作用机制的发现获得了2006年诸贝尔生理学或医学奖,2018年世界上首款siRNA药物获得美国FDA批准。siRNA的化学修饰对siRNA在体内的稳定性、毒性、药代动力学特性至关重要,是SiRNA研发中的重要影响因素,本赛题聚焦经过化学修饰的SiRNA序列数据预测其对相应的信使RNA(mRNA)沉默效率指标,对指导SiRNA药物设计具有重要指向性作用。药物基因(siRNA)反义序列,与疾病基因(mRNA)序列几乎。
2024-07-28 17:05:35 1378
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人