A robot is located at the top-left corner of a m x n grid (marked
‘Start’ in the diagram below).The robot can only move either down or right at any point in time. The
robot is trying to reach the bottom-right corner of the grid (marked
‘Finish’ in the diagram below).How many possible unique paths are there?
Above
is a 7 x 3 grid. How many possible unique paths are there?Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner,
there are a total of 3 ways to reach the bottom-right corner:
- Right -> Right -> Down
- Right -> Down -> Right
- Down -> Right -> Right Example 2:
Input: m = 7, n = 3 Output: 28
1、排列组合4ms
class Solution {
public:
int uniquePaths(int m, int n) {
if (m > n) {
swap(m, n);
}
double M = m + n - 2, N = m - 1;
int res=1;
for (int i = 1; i <= N; i++) {
res = res*(M - N + i) / i;
}
return res;
}
};
2、动态规划0ms
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n, 1));
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m-1][n-1];
}
};