- 博客(53)
- 资源 (4)
- 收藏
- 关注
原创 ubuntu中vscode连接自己的docker,报connect eacces /var/run/docker.sock,解决办法
connect eacces /var/run/docker.sock
2022-07-18 13:56:53
1509
原创 ncnn_pnnx初探
1、训练代码# 训练我家小喵咪nora的照片# 用的是yolov5 v6.1版本的ghost网络-->/models/hub/yolov5s-ghost.yaml# 训练请自己百度哈哈2、导出torchscript#在yolov5修改export.py,导出torchscript模型,修改要添加模型为训练模式 即model.train()3、下载pnnx或者自己编译pnnx这里我在window下测试了,一个是直接下载编译好的pnnx.exe,另外一个是下载官网源码,参考:https
2022-05-12 15:43:18
1240
原创 ncnn初探
1、训练代码# 训练我家小喵咪nora的照片# 用的是yolov5 v6.1版本的ghost网络-->/models/hub/yolov5s-ghost.yaml# 训练请自己百度哈哈2、导出onnx#在yolov5修改export.py,导出onnx模型,修改要添加模型为训练模式 即model.train()3、onnx转换为onnx-sim# 安装onnx-simpliferpip install onnx-simpliferpython -m onnxsim yolov5
2022-05-12 15:41:56
1799
原创 linux下设置vscodec++环境
如何在linux下配置C/C++环境,需要三个文件,分别创建出来并且修改,就可以编译c/c++launch.jsontasks.jsonc_cpp_properties.json配置好vscode插件,在扩展中安装。扩展在vscode的左边工具栏(方块状或者Ctrl+Shift+X呼出),在搜索栏搜索c++,选择Microsoft的c/c++插件,在linux安装好launch.json在vscode的运行调试中,点击创建launch.json{ "version": ".
2022-05-11 11:24:06
3510
原创 YOLO v5 python版本TensorRT推理
YOLO v5 TensorRT推理#include "iostream"#include "NvInfer.h"#include <fstream>#include <sstream>#include <assert.h>#include <vector>#include <numeric>#include "opencv2/opencv.hpp"#include <algorithm>#include <m
2022-05-10 21:09:14
1739
4
原创 YOLOv5 飞机与油桶目标检测
前期利用yolov3去做飞机和油桶的检测,之后做了Faster RCNN和SSD的同级比对,确实是Faster RCNN好一些,yolo v5也要出来比较一番。下面的是yolov4与yolo v3的区别(部分),最后用yolov5对飞机和油桶进行检测。yolo v4与yolo v3有很多trick改进,包括两种:bag of freebies和bag of specials。bag of freebies(赠品):指的是在增加模型性能,训练中会降低训练速度,但不影响推理耗时的技巧;bag of spe.
2022-04-25 22:44:33
2050
4
原创 SE Module
SE ModuleSE 结构是由momenta胡杰等人发表的ImageNet2017 冠军模型(插件)SE 结构的作用:特征重标定。对每个特征通道设置权重激励,抑制对当前任务无用的特征SE 结构的主要组成部分由池化层、全连接层(或者替换为卷积层)、ReLu组成squeeze。将空间维度进行特征压缩,将CxHxW压缩为Cx1x1,表征着1x1能获取全局的感受野。excitation。目的是生成每个特征通道的权重,这个权重作为后续表示每个特征通道的重要性(参数代表每个特征通道的重要性),si
2022-04-25 22:05:46
1916
原创 SPP结构在yolo、FasterRCNN的使用
SPP的作用主要是扩大感受野,融合不同尺度特征图的信息,完成特征融合SPP主要结构:由不同的大小kernel_size的池化层组成池化层可以:提取更高阶的特征,加强图像特征的不变形,增加图像的鲁棒性对卷积提取出来的信息做更进一步的降维。算法实现:class SpatialPyramidPooling(nn.Module): ''' 特征金字塔池化模块 特点:将通过kernel_size分别为5,9,13的池化层的4种特征拼接起来,获取同张图片多个空.
2022-04-25 21:15:37
1822
原创 CSP Darknet53
CSP Darknet53代码复现:这里的代码参考CSDN@Bubbliiiing在之前yolo v3的实战篇中,我们了解到yolo v3 使用的backbone是Darknet53,而今天要展现的是yolo v4的backbone CSP Darknet53。他们有什么不同呢?激活函数的改变,之前Darknet53使用的是LeakyReLU,而CSP Darknet53使用的是Mish。LeakyReLU的图像LeakyReLU是分段函数,当x>0时, f(x) = x
2022-04-19 23:05:18
10750
原创 SSD_Resnet 飞机与油桶数据集实战
SSDSSD是one-stage目标检测方法,和yolo一样。可以同时进行目标检测和分类,速度很快。SSD主要流程:选取合适的模型结构,挑选其中合适的特征层或者所有特征层作为backbone,再之后加上额外的卷积网络,组成SSD网络选取其中的6层卷积层输出,对卷积层输出做2个操作。坐标信息卷积处理:num_anchors x 4分类信息卷积处理:num_anchors x num_classes预测结果解码具体代码可以参考CSDN@Bubbliiiing的代码,本次实现
2022-04-19 21:58:18
1573
1
原创 Faster RCNN训练过程、训练结果展示
Faster RCNN目标检测有2种,一种是one stage目标检测,比如YOLO,SSD,Retina-Net;另外一种是two stage,比如RCNN家族,SPP net等。YOLO v3项目文章:https://blog.csdn.net/kui9702/article/details/122954209https://blog.csdn.net/kui9702/article/details/123140249https://blog.csdn.net/kui9702/article
2022-04-10 23:17:59
5075
原创 Faster RCNN 网络搭建代码解析
Faster RCNN前几篇写了yolo系列的模型训练以及模型优化,加速,这篇是关于Faster RCNN。Faster RCNN所用的数据集是来自yolo v3,基本可以无缝使用。数据集参考:https://blog.csdn.net/kui9702/article/details/122954209本节代码 GitHub:https://github.com/kile97/faster-rcnn-pytorchFaster RCNN的网络结构主要分为3部分:backbone 骨干网络
2022-04-10 11:02:15
2567
原创 Resnet50 pytorch复现
Resnet50 pytorch复现之前复现过Resnet18,今天复现与Resnet网络结构稍有不同的Resnet50Resnet50的基本结构是1x1卷积->3x3卷积->1x1卷积。而每一组卷积是这样的结构:卷积->BN->RELU组合而成。如果所示,上面左边的为Resnet18,34的残差结构,右边的是Resnet50 101 152的残差结构。从图中可以看出Resnet50 的 1x1的卷积->3x3卷积->1x1卷积结构中,第一个1x1的卷积是
2022-03-28 22:10:55
2281
3
原创 tesnortt_c++
tensorrt_c++_api 加速推理上一篇写了tensorrt python 加速,这一篇是关于c++版本的加速,但是由于在预处理没有找到c++ PIL的实现,在精度上复现不了python版本,并且速度也没有python的快,但是将模型做成服务的话,由于python的并发没有c++版本的快,所以在部署时还是使用c++更合适#pragma once#include <iostream>#include <fstream>#include <sstream>
2022-03-27 22:17:00
1883
原创 yolov3实战 超简单上手 飞机与油桶数据集之替换bottlenet 为Mobilenetv2,顺便补充相关loss func
mobilenet v2 keras实现from keras import backend, Input, Modelfrom keras.layers import Conv2D, BatchNormalization, Activation, ZeroPadding2D, DepthwiseConv2D, Add# relu6 relu6与relu的区别是relu6在relu的基础上增加了最大值抑制 即经过激活函数函数relu,最大值为6def relu6(x): return b.
2022-03-23 21:16:02
1817
原创 yolov3实战 超简单上手 飞机与油桶数据集之tflite预测
Tensorflow LiteTensorflow Lite(tf lite) 针对移动设备(安卓、ios)和嵌入式设备的轻量化解决方案,占用空间小,低延迟。tf lite在android8.1以上的设备上可以通过ANNA启用硬件加速。tf lite 主要流程:加载、转换模型在前几篇 我用yolo v3 训练了一个keras模型,本次操作用这个keras模型。注意:之前的操作是只保存了权重,但是在使用tf lite转化模型,被转换的模型需要有完整的模型结构和权重参数。import te
2022-03-20 20:30:45
5603
2
原创 tensorrt_python_api 加速推理
TensorRT前言 TensorRT是nvidia官方开源的加速推理框架,适用于流行的深度学习框架:pytorch、tensorflow、Caffe等。TensorRT(下面简称trt)需要与nvidia提供的显卡一起使用,没有nvidia的cuda无法使用。 提高部署推理的方法有2种,一种是训练过程中需要进行优化加速的,比如模型压缩、模型剪枝、量化、知识蒸馏,另外一种是训练完成后通过优化计算图结构,比如torch script、tf lite、trt、onnx等。本章根据上一章的内容
2022-03-18 00:11:18
2055
6
原创 tensorrt centos linux 安装
TensorRT安装TensorRT:https://developer.nvidia.cn/nvidia-tensorrt-download tensorrt下载网址下载并解压tar.gz[root@localhost data]# tar -zvxf TensorRT-8.4.0.6.Linux.x86_64-gnu.cuda-11.6.cudnn8.3.tar.gz 在/etc/profile加入环境变量[root@localhost python]# vim /etc/pr
2022-03-17 22:57:05
2565
原创 libshm.so: undefined symbol: _ZTIN2at22RefcountedMapAllocatorE
解决办法我试了很多,比如,卸载anaconda 卸载pytorch 删除虚拟环境 下载minianaconda代替anaconda 都不行真实解决办法:卸载torch 然后用conda 命令安装torch比如注意:pip install torch 无效;conda 有效注意:pip install torch 无效;conda 有效注意:pip install torch 无效;conda 有效...
2022-03-13 19:21:17
2245
原创 mobilenetv2
前言MobileNet 是轻量级卷积神经网络系列,现在已经有v1、v2、 v3.MobileNet v2 是对Mobile v1 的改进。本章利用MobileNet v2对Cifar10做分类任务部分网络结构说明MobileNet v1采用了depth-wise seperable convolution(深度可分离卷积)减少运算量激活层用了RELU6MobileNet v2与MobileNet v1一样,采用深度可分离卷积,采用Depth-wise和Point-wise提取特.
2022-03-13 17:49:53
3728
原创 Inception v3
Inception v32014年ImageNet竞赛的冠军Inception-v1,又名GoogLeNet。Inception v1的特点:模块增加网络的宽度。将模型的的输入经过几种卷积的计算,以concat方式连接。Inception v2,在v1版本上改进2个方向:引入BN层模型在计算过程中,会先对输入进行归一化Inception v3,在之前的基础上增加:将大卷积分解成小卷积,使得在感受野不变的情况下,减少参数的计算量max pooling层在下采样会导致信息损失大,于是设
2022-03-07 22:27:58
6103
1
原创 unet carvana_kaggle
语义分割:Unet语义分割:对一张图像上所有的像素点进行分类实例分割:精确到物体的边缘,并且标注同一个物体的类别全景分割:对图中所有物体都进行检测与分割FCNFCN全称为全卷积网络。在CNN广泛用于图像分类或者目标检测,但是传统基于CNN的语义分割表现地不好。于是Berkeley团队提出利用全卷积网络,即将图像级别分类扩展到图像像素级别的分类。FCN可以接受任意尺寸的图片。FCN在最后一层卷积层的输出feature map进行上采样,并且利用反卷积会出到输出图像的相同的尺寸,从而
2022-03-05 23:16:27
3812
原创 IoU计算
IoU计算什么是IoU(Intersection over Union),测量检测物体准确度的标准,用来衡量真实与预测之间的相关度IoU公式:IoU=AreaOfOverlap/AreaOfUnionIoU = Area Of Overlap / AreaOfUnionIoU=AreaOfOverlap/AreaOfUnionIoU=两个区域重叠的交集/两个区域重叠的并集IoU = 两个区域重叠的交集/两个区域重叠的并集IoU=两个区域重叠的交集/两个区域重叠的并集两个区域指的是
2022-02-26 15:50:19
1299
原创 yolo_darknet53代码解析
yolo_darknet53解析参考链接:https://github.com/qqwweee/keras-yolo3yolo作为one-stage检测算法,即一次性目标检测算法。yolo经历过5次迭代,其中v1-v3是原作者Joseph Redmon更新优化,之后的版本是由其他作者更新。其中yolov1论文地址:https://arxiv.org/pdf/1506.02640.pdfdarknet53 的解析参考 https://www.cnblogs.com/chenhuabin/p/
2022-02-25 20:11:11
1217
原创 kmeans 源码解析
主要步骤:初始化聚类中心点个数,即k获得所有标注文件中标注框宽度与长度,长与宽一一对应,并保存起来对保存的所有框的长与宽做kmeans聚类,获得聚类的k个结果,每个结果为一对坐标,分别表示这9个聚类的中心初始化聚类中心点个数,即k获得所有标注文件中标注框宽度与长度,长与宽一一对应,并保存起来原文链接:https://github.com/qqwweee/keras-yolo3 kmeans.py# 初始化Kmeas,cluster.
2022-02-24 17:10:59
1112
原创 leetcode100HOT
本人菜鸟 边刷边进步链接:https://leetcode-cn.com/playground/new/empty/# first 2204msclass Solution(object): def twoSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ f.
2022-02-22 22:54:27
425
原创 yolov3实战 超简单上手 飞机与油桶数据集
数据集链接:https://url25.ctfile.com/f/34628125-542711816-13fa54(访问密码:3005)yolov3 使用的链接:https://github.com/qqwweee/keras-yolo3数据集:数据集包含2类:一类是飞机图(aircraft);另外一类是油桶图(oiltank)。这些数据集来自CSDN@AI浩。1.查看数据集:每张数据集都包含一张图片以及对应的json标注文件,如下图:2.解析标注文件:其中需要从json文件获得所有被.
2022-02-15 23:24:33
1836
2
原创 python——GIL
引言:从单核时代转向多核时代。如何利用多核,可以使用多线程或者多进程。多进程的优点:地址空间独立,资源独立,稳定性好,相对来说更能利用多核资源多进程的缺点:需要与主程序交互,进程间交换资源、互相通信难,开销大多线程的优点:控制逻辑比多进程简单,共享资源,通信简单,资源开销小多线程的缺点:资源不独立,总体资源有限,稳定性较差。性能提高有限GIL:从单核转向多核,为了更有效地利用多核处理器的性能,推出多线程的方式,但是需要解决线程间的数据一致性和状态同步的问题,加锁的解决方案出现了。1.pyt.
2022-01-27 15:12:30
716
翻译 surf 原论文翻译
surfsurf论文翻译: 参考链接:https://blog.csdn.net/lavender19/article/details/120747414surf原论文:https://download.csdn.net/download/kui9702/77699132SURF:加速鲁棒特征概要:在本文中,我们提出了一种新型的描述和检测特征的算法,即 SURF(加速鲁棒特征)。SURF具有尺度和旋转不变性,在可重复性、独特性和鲁棒性方面接近甚至优于先前提出的方案SIFT, 并且
2022-01-26 11:35:40
1530
原创 albumentation
常用的图像增强库albumentationgithub地址 :https://github.com/albumentations-team/albumentations官网地址:https://albumentations.readthedocs.io/en/latest/imgauggithub: https://github.com/aleju/imgaug官网地址: https://imgaug.readthedocs.io/en/latest/Augmentorgithub
2022-01-24 17:07:03
4788
原创 javacv_音视频基础操作
因为工作需要,这边花了2天时间 做了一个基于javacv进行音视频转码,以及音视频截取功能,已经进行部分压测,没有问题。本文章是参考网上的方案,但是原来的链接没有记录。如果原作者发现了,可以私聊我,或者直接在下方评论把链接粘贴。本帖只发视频转码部分# maven依赖<dependency> <groupId>org.bytedeco</groupId> <artifactId>javacv-platform</artifactId> .
2022-01-07 17:03:58
1829
翻译 Resnet论文翻译
原论文 https://arxiv.org/pdf/1512.03385.pdf深度残差学习用于图像识别何恺明 等更深的神经网络更难训练。我们提出了一个残差学习框架,以简化比以前使用的更深入的网络的训练。我们明确地将层重新表示为参考层输入学习残差函数,而不是学习未引用的函数。我们提供了全面的经验证据,表明这些残差网络更容易优化,并且可以从显着增加的深度中获得准确性。在 ImageNet 数据集上,我们评估深度高达 152 层的残差网络——比 VGG 网络 [41] 深 8 倍,但仍然具有.
2022-01-04 23:45:44
391
原创 resnet18
前言在前篇vgg16之后,无法成功训练vgg16,发现是自己电脑可用的显存太低了,遂放弃。在2015 ILSVRC&COCO比赛中,何恺明团队提出的Resnet网络斩获第一,这是一个经典的网络。李沐说过,如果要学习一个CNN网络,一定是残差网络Resnet。与VGG相比,Resnet则更加出色,为后续的研究做下铺垫这是Resnet论文翻译参考链接:https://blog.csdn.net/weixin_42858575/article/details/93305238在之前的神经
2022-01-02 17:04:01
4995
原创 vgg16
引言 ⽜津⼤学的视觉⼏何组(visualgeometry group)92的VGG⽹络,采用块状结构,为后续的神经网络提供模板。 与AlexNet、LeNet⼀样,VGG⽹络可以分为两部分:第⼀部分主要由卷积层和汇聚层组成,第⼆部分由全连接层组成。 本节 我们走进vgg16VGG Net原论文https://blog.csdn.net/Jwenxue/article/details/89207067实际上我们在使用较多的vgg16,是属于上图D。整理之后的网络
2021-12-30 16:59:26
1845
ubuntu18下 realtek 网卡驱动(台式机主板b550M plus wifi2)安装后可以宽带上网
2023-01-29
Word2Vec 需要的数据集 text8.zip
2020-10-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人