常见数列求和

等差,等比

等差:
Sn=a1n+n(n1)d2S{n}=a_{1}n+\frac{n(n-1)d}{2}
Sn=dn22+(a1d2)nS_{n}=\frac{dn^{2}}{2}+(a_{1}-\frac{d}{2})n
Sn=n(a1+a2)2S_{n}=\frac{n*(a_{1}+a_{2})}{2}
等比:
Sn=a1(1qn)1q,q≠1S_{n}=\frac{a_{1}(1-q_{n})}{1-q},q =\not 1
Sn=an,q=1S_{n}=an,q=1

分组求和

等差和等比相加的得到的数列,直接分别求和,然后再相加。
该数列既不是等比也不是等差数列。

带绝对值的求和

找到正负的分界,然后分别计算后相加。

分奇偶项的求和,带 (1)n(-1)^{n}

错位相减

等比乘等差:先乘公比后错位相减。
注意前后两项,最后一项为负,中间的值指数一定要注意。

裂项求和

常见裂项:
1n(n+1)=1n1n+1\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}
1n(n+k)=1k(1n1n+k)\frac{1}{n(n+k)}=\frac{1}{k}(\frac{1}{n}-\frac{1}{n+k})
1n21=12(1n11n+1)\frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right)
14n21=12(12n112n+1)\frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right)
n+1n(n1)2n=1(n1)2n11n2n\frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}= \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}}
1n+1n=n+1+n\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}
1n+kn=1k(n+k+n)\frac{1}{\sqrt{n+k}-\sqrt{n}}=\frac{1}{k}(\sqrt{n+k}+\sqrt{n})
裂完项后,一般可以邻项相消,或者隔几项相互消除。

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值