使用 NVIDIA CUDA-Pointpillars 检测点云中的对象
文章目录
点云是坐标系中点的数据集。 点包含丰富的信息,包括三维坐标X、Y、Z; 颜色; 分类值; 强度值; 和时间。 点云主要来自各种 NVIDIA Jetson 用例中常用的激光雷达,例如自主机器、感知模块和 3D 建模。
关键应用之一是利用远程和高精度数据集来实现感知、映射和定位算法的 3D 对象检测。
PointPillars 是用于点云推理的最常用模型之一。 这篇文章讨论了面向 Jetson 开发人员的 NVIDIA CUDA 加速 PointPillars 模型。 立即下载 CUDA-PointPillars 模型。
什么是 CUDA-Pointpillars
在这篇文章中,我们介绍了 CUDA-Pointpillars,它可以检测点云中的对象。 过程如下:
- 基础预处理:生成pillars。
- 预处理:生成 BEV 特征图(10 个通道)。
- TensorRT 的 ONNX 模型:一种可由 TensorRT 实现的 ONNX 模式。
- 后处理:通过解析 TensorRT 引擎的输出生成边界框。
基础预处理
基础预处理步骤将点云转换为基础特征图。 它提供以下组件:
- 基本特征图
- 支柱坐标:每个pillar的坐标。
- 参数:pillar的数量。
预处理
预处理步骤将基本特征图(四个通道)转换为 BEV 特征图(10 个通道)。
TensorRT 的 ONNX 模型
OpenPCDet 的原生点柱因以下原因进行了修改:
- 小操作太多,内存带宽低。
- TensorRT 不支持某些操作,例如 NonZero。
- 一些操作,如 ScatterND,性能较低。
- 他们使用“dict”作为输入和输出,不能导出 ONNX 文件。
为了从原生 OpenPCDet 导出 ONNX,我们修改了模型(下图)。
您可以将整个 ONNX 文件分为以下几个部分:
- 输入:BEV 特征图、支柱坐标、参数。 这些都是在预处理中生成的。
- 输出:类、框、Dir_class。 这些由后处理解析以生成边界框。
- ScatterBEV:将点柱 (1D) 转换为 2D 图像,可以作为 TensorRT 的插件使用。
- 其他:由 TensorRT 支持。
后期处理
后处理解析 TensorRT 引擎的输出(类、框和 dir_class)和输出边界框。 下图显示了示例参数。
使用 CUDA-PointPillars
要使用 CUDA-PointPillars,请为点云提供 ONNX 模式文件和数据缓冲区:
std::vector<Bndbox> nms_pred;
PointPillar pointpillar(ONNXModel_File, cuda_stream);
pointpillar.doinfer(points_data, points_count, nms_pred);
将 OpenPCDet 训练的原生模型转换为 CUDA-Pointpillars 的 ONNX 文件
在我们的项目中,我们提供了一个 Python 脚本,可以将 OpenPCDet 训练的原生模型转换为 CUDA-Pointpillars 的 am ONNX 文件。 在 CUDA-Pointpillars 的 /tool
目录下找到 exporter.py
脚本。
要获取当前目录中的 pointpillar.onnx 文件,请运行以下命令:
$ python exporter.py --ckpt ./*.pth
性能
该表显示了测试环境和性能。 测试前,提升 CPU 和 GPU。
Jetson | Xavier NVIDIA AGX 8GB |
---|---|
Release | NVIDIA JetPack 4.5 |
CUDA | 10.2 |
TensorRT | 7.1.3 |
Infer Time | 33 ms |