18.cuBLAS开发指南中文版--cuBLAS中的Level-2函数gbmv()

2.6. cuBLAS Level-2 函数参考

在本章中,我们将描述执行矩阵向量运算的 Level-2 基本线性代数子程序 (BLAS2) 函数。
在这里插入图片描述

2.6.1. cublas<t>gbmv()

cublasStatus_t cublasSgbmv(cublasHandle_t handle, cublasOperation_t trans,
                           int m, int n, int kl, int ku,
                           const float           *alpha,
                           const float           *A, int lda,
                           const float           *x, int incx,
                           const float           *beta,
                           float           *y, int incy)
cublasStatus_t cublasDgbmv(cublasHandle_t handle, cublasOperation_t trans,
                           int m, int n, int kl, int ku,
                           const double          *alpha,
                           const double          *A, int lda,
                           const double          *x, int incx,
                           const double          *beta,
                           double          *y, int incy)
cublasStatus_t cublasCgbmv(cublasHandle_t handle, cublasOperation_t trans,
                           int m, int n, int kl, int ku,
                           const cuComplex       *alpha,
                           const cuComplex       *A, int lda,
                           const cuComplex       *x, int incx,
                           const cuComplex       *beta,
                           cuComplex       *y, int incy)
cublasStatus_t cublasZgbmv(cublasHandle_t handle, cublasOperation_t trans,
                           int m, int n, int kl, int ku,
                           const cuDoubleComplex *alpha,
                           const cuDoubleComplex *A, int lda,
                           const cuDoubleComplex *x, int incx,
                           const cuDoubleComplex *beta,
                           cuDoubleComplex *y, int incy)

此函数执行带状矩阵向量乘法

y = α o p ( A ) x + β y y=\alpha op(A)x + \beta y y=αop(A)x+βy

其中 A 是具有 kl 次对角线和 ku 超对角线的带状矩阵,x 和 y 是向量, α \alpha α β \beta β 是标量。 此外,对于矩阵 A:

o p ( A ) = { A     如果 t r a n s a = = C U B L A S O P N , A T   如果 t r a n s a = = C U B L A S O P T , A H   如果 t r a n s a = = C U B L A S O P H op(A)= \begin{cases} A\ \ \ \ 如果 transa == CUBLAS_OP_N,\\ A^T \ \ 如果 transa == CUBLAS_OP_T,\\ A^H \ \ 如果 transa == CUBLAS_OP_H \end{cases} op(A)= A    如果transa==CUBLASOPN,AT  如果transa==CUBLASOPT,AH  如果transa==CUBLASOPH

带状矩阵 A 逐列存储,主对角线存储在 ku+1 行(从第一个位置开始),第一个上对角线存储在 ku 行(从第二个位置开始),第一个子对角线存储在 ku+2 行 (从第一个位置开始)等等。所以一般来说,元素 A(i,j) 存储在内存位置 A(ku+1+i-j,j) 中,因为 j=1,…,n 和 i ∈ [ m a x ( 1 , j − k u ) , m i n ( m , j + k l ) ] i\in[max(1,j-ku), min(m, j+kl)] i[max(1,jku),min(m,j+kl)] . 此外,数组 A 中的元素在概念上不对应于带状矩阵中的元素(左上角 ku * ku 和右下角 kl *kl 三角形)不被引用。

Param.MemoryIn/outMeaning
handleinputhandle to the cuBLAS library context.
transinputoperation op(A) that is non- or (conj.) transpose.
minputnumber of rows of matrix A.
ninputnumber of columns of matrix A.
klinputnumber of subdiagonals of matrix A.
kuinputnumber of superdiagonals of matrix A.
alphahost or deviceinput<type> scalar used for multiplication.
Adeviceinput<type> array of dimension lda x n with lda>=kl+ku+1.
ldainputleading dimension of two-dimensional array used to store matrix A.
xdeviceinput<type> vector with n elements if transa == CUBLAS_OP_N and m elements otherwise.
incxinputstride between consecutive elements of x.
betahost or deviceinput<type> scalar used for multiplication, if beta == 0 then y does not have to be a valid input.
ydevicein/out<type> vector with m elements if transa == CUBLAS_OP_N and n elements otherwise.
incyinputstride between consecutive elements of y.

该函数可能返回的错误值及其含义如下所列。

Error Value Meaning

CUBLAS_STATUS_SUCCESS

操作成功完成

CUBLAS_STATUS_NOT_INITIALIZED

库未初始化

CUBLAS_STATUS_INVALID_VALUE

  • If m, n, kl, ku < 0 or

  • if lda < (kl+ku+1) or

  • if incx, incy == 0 or

  • if trans != CUBLAS_OP_N, CUBLAS_OP_T, CUBLAS_OP_C or

  • alpha, beta == NULL

CUBLAS_STATUS_EXECUTION_FAILED

该功能无法在 GPU 上启动

请参考:
sgbmv, dgbmv, cgbmv, zgbmv

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扫地的小何尚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值