用回溯法求子集和的c++代码

本文介绍了使用回溯法解决寻找子集和问题的C++代码实现。通过定义解空间、深度优先搜索、限界函数和回溯策略来查找问题的解。代码中详细展示了如何动态构建解空间并进行回溯操作,以找到满足特定和的子集。
摘要由CSDN通过智能技术生成


 

  用回溯算法解决问题的一般步骤为:

  一、定义一个解空间,它包含问题的解。

  二、利用适于搜索的方法组织解空间。

  三、利用深度优先法搜索解空间。

  四、利用限界函数避免移动到不可能产生解的子空间。

  问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。

  回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子

九步法(九宫格)通常用于解决八皇后问题,这是一种经典的回溯算法题目,目标是在8x8的棋盘上放置8个皇后,使得任意两个皇后都不在同一行、同一列或对角线上。以下是使用C++编写的九步法求解子句集的一个简化版本,仅适用于解答特定情况下的八皇后问题: ```cpp #include <iostream> using namespace std; bool check(int row, int col, bool** board) { // 检查同一行和左上方对角线是否有皇后 for (int i = 0; i < row; ++i) if (board[i][col] || board[row - i - 1][col + i]) return false; // 检查右上方对角线是否有皇后 for (int i = 0; i < row && col + i < 8; ++i) if (board[row - i - 1][col + i]) return false; return true; } void printSolution(int row, int col, bool** board) { if (row == 8) { for (int i = 0; i < 8; ++i) { for (int j = 0; j < 8; ++j) cout << (board[i][j] ? "Q " : "."); cout << endl; } return; } // 尝试将皇后放在当前位置 if (check(row, col, board)) { board[row][col] = true; printSolution(row + 1, col, board); board[row][col] = false; // 如果放不下,尝试下一个位置 printSolution(row, col + 1, board); } } int main() { bool board[8][8]; for (int i = 0; i < 8; ++i) for (int j = 0; j < 8; ++j) board[i][j] = false; printSolution(0, 0, board); return 0; } ``` 这个代码中,`check()` 函数负责检查当前位置是否安全,`printSolution()` 递归地放置皇后并打印解决方案。注意这只是一个简化版,实际应用可能需要更完整的错误处理和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值