LTV 分析,全称 Customer Lifetime Value 分析(客户终身价值分析),是衡量一个客户在与你的产品或服务关系存续期间,能够为你带来多少收益的分析方法。
🔍 一、LTV(客户终身价值)是什么?
LTV(Lifetime Value) 是指从客户首次购买到最后一次交易之间,客户对企业产生的净利润总额。
简单来说:
👉 一个客户,能给你带来多少钱?
📊 二、LTV 的公式(常见计算方法)
方法 1:简单平均值法
LTV = 客户平均订单金额 × 客户平均购买次数
方法 2:考虑毛利 & 留存率(更精准)
LTV = 客户平均每月消费 × 毛利率 × 平均客户生命周期(月)
或者
LTV = ARPU × Gross Margin × Customer Lifetime
其中:
-
ARPU:每用户平均收入(Average Revenue Per User)
-
Customer Lifetime:客户平均活跃周期
-
Gross Margin:毛利率
🧠 三、LTV 分析的意义
作用 | 说明 |
---|---|
衡量客户价值 | 哪类客户更值得长期维护? |
指导营销投入 | 投入多少广告费获取一个客户才划算? |
优化用户分层与运营策略 | 高 LTV 客户应重点挖掘,低 LTV 要筛选 |
和 CAC(获客成本)联动决策 | 若 LTV > CAC,则说明客户模型是健康的 |
🧪 四、LTV 分析在数据分析中的应用场景
应用方向 | 举例 |
---|---|
用户行为分析 | 哪类用户在活跃一段时间后贡献最多营收? |
渠道投放评估 | 哪个广告渠道带来的客户 LTV 更高? |
精细化营销 | 给高 LTV 客户发优惠券更有可能转化 |
会员体系优化 | 哪种会员策略能延长客户生命周期? |
🔧 五、Power BI 中做 LTV 分析的思路
-
准备数据模型:
-
用户表(客户ID、注册时间等)
-
订单表(客户ID、订单时间、订单金额)
-
产品表(可选,用于细分)
-
-
创建度量值 Measure:
-
总收入 =
SUM(Orders[订单金额])
-
客户数量 =
DISTINCTCOUNT(Orders[客户ID])
-
平均生命周期(可用 DATEDIFF)
-
-
计算 LTV:
LTV = DIVIDE( [总收入], [客户数量] )
-
可视化:
-
用图表按用户分群展示不同群体的 LTV
-
按渠道、时间、地域分析 LTV 的变化
-
✅ 总结一句话:
LTV 分析 = 衡量客户长期价值的“利润放大镜”,对精准营销、产品策略和用户留存优化都极具指导意义。