空瓶、瓶盖换酒问题

问题描述:已知啤酒2元1瓶,2个空瓶可以换1瓶啤酒,4个瓶盖可以换1瓶啤酒。输入钱数求最多能喝到酒的数量,并求出兑换次数。

问题分析:

第一步:假设有m元钱,可以买到【m/2】{【m/2】表示不超过m/2的最大整数,后面用法相同}瓶酒,喝完后,此时分别有【m/2】个酒瓶和【m/2】个瓶盖,如果瓶盖数不小于4或者酒瓶数不小于2,就可以进行换酒,我们先假设m/2大于4,就可以换到【【(m/2)】/2】+【【(m/2)】/4】瓶酒,此时原来就剩下【m/2】-【【(m/2)】/2】*2个酒瓶和【m/2】-【【(m/2)】/4】*4个瓶盖。

第二步:新换的酒喝完后,新的瓶盖数和酒瓶数为原来剩下的加上新换的酒产生的酒瓶和瓶盖,新的瓶盖数为【m/2】-【【(m/2)】/4】*4+【【(m/2)】/2】+【【(m/2)】/4】,新的酒瓶数为【m/2】-【【(m/2)】/2】*2+【【(m/2)】/2】+【【(m/2)】/4】,如果瓶盖数不小于4或者酒瓶数不小于2,我们就可以进行与第一步相同的操作分析。如果酒瓶数小于2并且瓶盖数小于4,就无法换酒。

解决方法:买了酒后,产生酒瓶和瓶盖可以换酒,换的酒喝完后产生的酒瓶和瓶盖符合条件又可以换酒,喝完后又会产生酒瓶和瓶盖..........直到不符合条件,就不能换酒了。这种具有传递性的问题我们可以通过C语言中的函数递归解决。

代码处理:

1、取整

2、取余:酒瓶数%2为剩下的酒瓶数    瓶盖数%4为剩下的瓶盖数

3、设立函数

4、函数内的条件

5、记录兑换过程

6、返回值设定

代码:

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
int  exchange(int bottle, int cap)//bottle表示瓶子数,cap表示瓶盖数
{
	static int i = 0;

	if (bottle >= 2 || cap >= 4)
	{
		i++;
		printf("第%d次兑换\n", i);
		return bottle / 2 + cap / 4 + exchange(bottle / 2 + cap / 4 + bottle % 2, bottle / 2 + cap / 4 + cap % 4);
		//再次将新瓶子数和瓶盖数代入函数
	}
	else { printf("总共%d兑换次\n",i); return 0; }
}

int main()
{
	int money;
	printf("请输入钱数:");
	scanf("%d", &money);
	int sum = money / 2 + exchange(money / 2, money / 2);
	printf("能喝到%d瓶酒", sum);
	return 0;

}

 运行结果:

上述分析如有错误或者理解不周的地方,希望大家可以指出,感谢支持!

同时希望大家每一天都快乐度过! 

### 空瓶问题分析 空瓶问题是典型的数学与算法结合的问题,其核心在于如何利用已有的资源(空瓶)最大化获取新的物品()。以下是对此类问题的深入解析。 #### 数学公式的推导 对于给定的参数 $ A $ 表示多少个空瓶可以取一瓶新,$ B $ 表示当前拥有的空瓶数量,则可以通过以下公式快速求解最终能够获得的最大量: $$ C = \left\lfloor \frac{B}{A-1} \right\rfloor $$ 其中 $\left\lfloor x \right\rfloor$ 表示向下取整操作[^1]。此公式基于这样一个事实:每 $ A-1 $ 个空瓶实际上相当于一个额外的,因为每次交都会消耗 $ A $ 个空瓶并返回一个新的及其对应的空瓶。 #### 算法实现 下面是一个通用的C++解决方案来处理此类问题,该方案适用于任何初始酒瓶数和兑比率的情况: ```cpp class Solution { public: int numWaterBottles(int numBottles, int numExchange) { int totalDrank = numBottles; while(numBottles >= numExchange){ int newBottles = numBottles / numExchange; totalDrank += newBottles; numBottles = newBottles + (numBottles % numExchange); } return totalDrank; } }; ``` 上述代码片段展示了通过循环不断更新剩余空瓶数目直至无法再进行兑为止的过程[^3]。每一次迭代都重新计算可兑的新数量以及剩下的不可完全兑的零头空瓶,并累加至总的饮计数之中。 #### 特殊情况考虑 当涉及到更复杂的场景时,例如不仅有空瓶还可以用瓶盖去兑新矿泉水的情况下,就需要分别统计两种资源所能贡献的价值,并综合考量两者之间的转关系[^4]。这类扩展型题目往往需要更加细致的状态转移方程或者动态规划方法来进行解答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值