论文《一种可解释的电力电子数据驱动异常检测方法》

电力电子领域中的大多数异常检测方法都来源于开关模式、电压检测,或者输出电压的频率分析等经典策略。这些方法都很好但都依赖于结果,并且集中在调制技术上。

​       本文https://arxiv.org/abs/2209.11427提出了一个异常检测的通用框架,允许测试几种机器学习方法。以一个两电平,三相并网的可控性电压源转换器(VSC)为例:

 

使用VSG控制原理来获取频率和相位角信息。由于并网VSC在不同的有功和无功参考点(分别为id和iq)下运行,可从控制平台上获取相应的数据,训练基于集成回归的学习模型来模拟控制响应。

​文章提出了两种检测方法:

A. Matrix Profile(矩阵轮廓算法)

​算法步骤概况:

1) For each point in the window (m), compute the distance to the nearest neighbor against the entire data set.

​2) Exclude identical or nearly identical matches to prevent inaccuracy.

​3) Update the distance matrix with the new closest neighbor distance. 

​4) Set the position matrix with the index position of the new closest neighbor. 

​B. Deep Learning(机器学习算法)

​根据最近出现的基于attention变压器深度学习算法,该算法在自然语言处理,表格处理和时间序列领域有很好的前景,下图是可视化的PEC数据集故障:

作者的代码开源:https://github.com/5uperpalo/Anomaly-Transformer_FIREMAN 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值