电力电子领域中的大多数异常检测方法都来源于开关模式、电压检测,或者输出电压的频率分析等经典策略。这些方法都很好但都依赖于结果,并且集中在调制技术上。
本文https://arxiv.org/abs/2209.11427提出了一个异常检测的通用框架,允许测试几种机器学习方法。以一个两电平,三相并网的可控性电压源转换器(VSC)为例:
使用VSG控制原理来获取频率和相位角信息。由于并网VSC在不同的有功和无功参考点(分别为id和iq)下运行,可从控制平台上获取相应的数据,训练基于集成回归的学习模型来模拟控制响应。
文章提出了两种检测方法:
A. Matrix Profile(矩阵轮廓算法)
算法步骤概况:
1) For each point in the window (m), compute the distance to the nearest neighbor against the entire data set.
2) Exclude identical or nearly identical matches to prevent inaccuracy.
3) Update the distance matrix with the new closest neighbor distance.
4) Set the position matrix with the index position of the new closest neighbor.
B. Deep Learning(机器学习算法)
根据最近出现的基于attention变压器深度学习算法,该算法在自然语言处理,表格处理和时间序列领域有很好的前景,下图是可视化的PEC数据集故障:
作者的代码开源:https://github.com/5uperpalo/Anomaly-Transformer_FIREMAN