目录
一、数据类型的介绍
我们都知道基本的内置类型有以下这些
char //字符数据类型
short //短整型
int //整形
long //长整型
long long //更长的整形
float //单精度浮点数
double //双精度浮点数
首先我们要知道sigend表示有符号,有正负号的数据可以直接存放,unsigned表示无符号,只有正数的数据可以存放
那我们来进行一下归类,
1、整数家族
char //字符数据类型;
char ch1;char是不确定有没有符号的,这取决与编译器;
signed char ch2;是由符号的;unsigned char ch3;是无符号的;
short //短整型
short s1;是有符号的等价于signed short s1;unsigned是无符号的;
int //整形;long //长整型;long long //更长的整形,则和short是一样的;
2、浮点型家族
float、double也是一样的。
3、构造类型(自定义类型)
数组类型:数组的类型是我们去掉数组名之后剩下的如int [10]就是我数组的类型,所以只要改变了[ ]中的数字或者元素类型发生了变化,数组的类型就改变了。
结构体类型 struct;
枚举类型 enum;
联合类型 union;
4、指针类型
指针变量就是用来存放地址的。
int *pi;
char *pc;
float* pf;
void* pv;
5、空类型
void表示空类型(无类型),通常应用于函数的返回类型、函数的参数、指针类型。
二、整形在内存中的存储
1、原码、补码、反码
计算机中的有符号数有三种表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位三种表示方法各不相同。
对于整形来说:数据存放内存中其实存放的是补码。
这是因为在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理; 同 时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
正数的三码都相同。如int a = 10;原、补、反码=00000000000000000000000000001010
负数的则通过以下操作:如int a = -10
原码:直接将二进制按照正负数的形式翻译成二进制就可以。如10000000000000000000000000001010
反码:将原码的符号位不变,其他位依次按位取反就可以得到了。如11111111111111111111111111110101
补码:反码+1就得到补码。如11111111111111111111111111110110
转化为16进制就是0xfffffff6
这里我们可以看见顺序好像有点不太对,这是什么原因呢?下面我来为大家讲解。
三、大端和小端
1、大端和小端的定义
什么是大端:大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
什么是小端:小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
这里我们可以看到在这个编译器中底位是保存在低地址中的,高位是保存高地址中的,所以是小端存储。
2、那么为什么会有大小端模式之分呢?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一 个字节,一个字节为8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具 体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字 节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。 例如一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小 端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小 端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
3、编写一个程序来判断是大端还是小端。
我们可以写一个简单的程序来判断,如这样(这里指针转成char*目的是访问低地址的第一个字节,访问的话应该是从低地址开始访问。)
经过简单的优化可以变成这样子:
四、浮点型在内存中的存储
1、常见的浮点数类型
如float,double,longdouble。
2、举一个“栗子”
大家可以想一想,是不是觉得答案是9、9.000000、9、9.000000呢?
答案当然不是,那让我们来分析一下!首先,根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E (-1)
^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M;
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M;
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形 式,其中xxxxxx表示小数部分。 IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。 比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。 以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
3、指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前 加上第一位的1。 比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位, 则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000,则其
二进制表示形式为: 00111111000000000000000000000000
全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为 0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
所以我们来分析第一个*pfloat的值应该是按照浮点数的形式来存储的,9变成float类型的二进制应该是1001.0,那么是这种形式储存的(-1)^0*1.001*2^3;所以存储应该是00000000000000000000000000001001,这时E全为0符合第二种情况所以转换为十进制是0.000000。
那么第二个n呢就是01000001000100000000000000000000转换为十进制就是1091567616。