loc和iloc的区别,这两个有点容易混淆,因此需要特殊方式来加强记忆
总结:
-
loc使用范围比iloc更广更实用,loc可以使用切片、名称(index,columns)、也可以切片和名称混合使用;但是loc不能使用不存在的索引来充当切片取值,像-1
-
iloc只能用整数来取数
-
不借助loc和iloc
data=DataFrame(np.arange(16).reshape(4,4),index=list(“ABCD”),columns=list(“wxyz”))
print(data)
#可以直接取列索引,行索引却不行
aa=data[“w”]
bb=data[1:2] #行数值切片
cc=data[1:2,1:2] #不能同时切片,也就是中间不能有逗号
推荐使用loc
iloc: i可以看着int,因此iloc就是用数字(int)来取数据的.
iloc使用情况: 使用整数通过切片等方式取数
比如:
# 切片
# 下面两种方法有同样的效果; 表示取出df中1:5行(不包括5)和3:6列
1 df.iloc[1:5,3:6]
2 df.iloc[[1,2,3,4],[3,4,5]]
# 另外 df.iloc[0]、df.iloc[1]、df.iloc[-1] 分别表示第一行、第二行、最后一行
# 同理df.iloc[:,0]、df.iloc[:,1]、df.iloc[:,-1] 分别表示第一列、第二列、最后一列
loc的使用范围要远高于iloc, loc也能够做到iloc的切片取数, 除了df.loc[-1]
loc使用情况:
使用切片、索引、列名称查找
按条件(bool)查找
比如:
pandas中iloc、loc的用法和区别
时间:2020-03-17
本文章向大家介绍pandas中iloc、loc的用法和区别,主要包括pandas中iloc、loc的用法和区别使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。
loc和iloc的区别,这两个有点容易混淆,因此需要特殊方式来加强记忆
总结:
1. loc使用范围比iloc更广更实用,loc可以使用切片、名称(index,columns)、也可以切片和名称混合使用;但是loc不能使用不存在的索引来充当切片取值,像-1
2. iloc只能用整数来取数
推荐使用loc
iloc: i可以看着int,因此iloc就是用数字(int)来取数据的.
iloc使用情况: 使用整数通过切片等方式取数
比如:
# 切片
# 下面两种方法有同样的效果; 表示取出df中1:5行(不包括5)和3:6列
1 df.iloc[1:5,3:6]
2 df.iloc[[1,2,3,4],[3,4,5]]
# 另外 df.iloc[0]、df.iloc[1]、df.iloc[-1] 分别表示第一行、第二行、最后一行
# 同理df.iloc[:,0]、df.iloc[:,1]、df.iloc[:,-1] 分别表示第一列、第二列、最后一列
loc的使用范围要远高于iloc, loc也能够做到iloc的切片取数, 除了df.loc[-1]
loc使用情况:
使用切片、索引、列名称查找
按条件(bool)查找
比如:
1 # 切片
2 hy_data.loc[2:4,]
3 hy_data.loc[[0,1,2,3],:]
4 # 切片和名称混合
5 hy_data.loc[2:4,'用户编号']
6 # 按条件取数
7 # 表示取出df中“行业分类”列值的长度等于6的所有行
8 hy_data.loc[hy_data['行业分类'].str.len() == 6, :]
loc——通过行标签索引行数据
iloc——通过行号索引行数据
ix——通过行标签或者行号索引行数据(基于loc和iloc 的混合)
标签切片,如’a’:‘c’,与序列切片如0:2不同,后者不包含index=2的元素,前者包含结束标签’c’所在的行。
布尔类型数组作为标签,例如[True, False]等价于[‘a’,‘c’]
1.loc
import numpy as np
import pandas as pd
from pandas import *
from numpy import *
data=DataFrame(np.arange(16).reshape(4,4),index=list("ABCD"),columns=list("wxyz"))
print(data)
# w x y z
#A 0 1 2 3
#B 4 5 6 7
#C 8 9 10 11
#D 12 13 14 15
#loc
#行的选取
print(data.loc["A"])
print(type(data.loc["A"]))
#w 0
#x 1
#y 2
#z 3
#Name: A, dtype: int32
#<class 'pandas.core.series.Series'>
print(data.loc[["A"]])
print(type(data.loc[["A"]]))
# w x y z
#A 0 1 2 3
#<class 'pandas.core.frame.DataFrame'>
#综上,[]返回Series,[[]]返回DataFrame
print(data.loc["A","w"])
print(type(data.loc["A","w"]))
#0
#<class 'numpy.int32'>
print(data.loc[:,"w"])
print(type(data.loc[:,"w"]))
#A 0
#B 4
#C 8
#D 12
#Name: w, dtype: int32
#<class 'pandas.core.series.Series'>
print(data.loc["A":"C"])
print(type(data.loc["A":"C"]))
# w x y z
#A 0 1 2 3
#B 4 5 6 7
#C 8 9 10 11
#<class 'pandas.core.frame.DataFrame'>
print(data.loc["A":"C","w":"y"])
print(type(data.loc["A":"C","w":"y"]))
# w x y
#A 0 1 2
#B 4 5 6
#C 8 9 10
#<class 'pandas.core.frame.DataFrame'>
print(data.loc[["A","C"],["w","y"]])
print(type(data.loc[["A","C"],["w","y"]]))
# w y
#A 0 2
#C 8 10
#<class 'pandas.core.frame.DataFrame'>
print(data.loc[:,["w","y"]])
print(type(data.loc[:,["w","y"]]))
# w y
#A 0 2
#B 4 6
#C 8 10
#D 12 14
#<class 'pandas.core.frame.DataFrame'>
#列的选取
print(data["w"])#等同于print(data.loc[:,"w"])
#A 0
#B 4
#C 8
#D 12
#Name: w, dtype: int32
print(data.loc[:,"w"])
#A 0
#B 4
#C 8
#D 12
#Name: w, dtype: int32
print(data["w"].equals(data.loc[:,"w"]))#True
#根据特殊条件选取行列
print(data["w"]>5)
#A False
#B False
#C True
#D True
#Name: w, dtype: bool
print(data.loc[data["w"]>5])
# w x y z
#C 8 9 10 11
#D 12 13 14 15
print(data.loc[data["w"]>5,"w"])
print(type(data.loc[data["w"]>5,"w"]))
#C 8
#D 12
#Name: w, dtype: int32
#<class 'pandas.core.series.Series'>
print(data.loc[data["w"]>5,["w"]])
print(type(data.loc[data["w"]>5,["w"]]))
# w
#C 8
#D 12
#<class 'pandas.core.frame.DataFrame'>
print(data["w"]==0)
print(data.loc[lambda data:data["w"]==0])
print(type(data.loc[lambda data:data["w"]==0]))
#A True
#B False
#C False
#D False
#Name: w, dtype: bool
# w x y z
#A 0 1 2 3
#<class 'pandas.core.frame.DataFrame'>
#loc赋值
print(data)
# w x y z
#A 0 1 2 3
#B 4 5 6 7
#C 8 9 10 11
#D 12 13 14 15
data.loc[["A","C"],["w","x"]]=999
print(data)
# w x y z
#A 999 999 2 3
#B 4 5 6 7
#C 999 999 10 11
#D 12 13 14 15
2.iloc
data=DataFrame(np.arange(16).reshape(4,4),index=list("ABCD"),columns=list("wxyz"))
print(data)
# w x y z
#A 0 1 2 3
#B 4 5 6 7
#C 8 9 10 11
#D 12 13 14 15
print(data.iloc[0])
print(type(data.iloc[0]))
#w 0
#x 1
#y 2
#z 3
#Name: A, dtype: int32
#<class 'pandas.core.series.Series'>
#print(data.iloc["A"])报错
#print(data.loc[0])报错
print(data.loc[["A"]])
print(type(data.loc["A"]))
# w x y z
#A 0 1 2 3
#<class 'pandas.core.series.Series'>
3.iloc和loc差别
iloc是按照行数取值,而loc按着index名取值
data=DataFrame(np.arange(16).reshape(4,4),index=list("1234"),columns=list("wxyz"))
print(data)
# w x y z
#1 0 1 2 3
#2 4 5 6 7
#3 8 9 10 11
#4 12 13 14 15
print(data.iloc[0])
#w 0
#x 1
#y 2
#z 3
#Name: 1, dtype: int32
#print(data.loc[0])报错