iloc loc 区别

本文详细介绍了Pandas中loc和iloc的区别及其使用方法。loc使用更广泛,支持切片、索引和列名混合使用,但不能用不存在的索引。iloc仅接受整数取数,适合切片操作。推荐使用loc,它能实现iloc的所有功能且更加灵活。示例中展示了loc和iloc的各种取数方式,包括按条件查找。
摘要由CSDN通过智能技术生成

loc和iloc的区别,这两个有点容易混淆,因此需要特殊方式来加强记忆

总结:

  1. loc使用范围比iloc更广更实用,loc可以使用切片、名称(index,columns)、也可以切片和名称混合使用;但是loc不能使用不存在的索引来充当切片取值,像-1

  2. iloc只能用整数来取数

  3. 不借助loc和iloc

data=DataFrame(np.arange(16).reshape(4,4),index=list(“ABCD”),columns=list(“wxyz”))
print(data)

#可以直接取列索引,行索引却不行
aa=data[“w”]
bb=data[1:2] #行数值切片
cc=data[1:2,1:2] #不能同时切片,也就是中间不能有逗号

推荐使用loc

iloc: i可以看着int,因此iloc就是用数字(int)来取数据的.
iloc使用情况: 使用整数通过切片等方式取数
比如:

# 切片
# 下面两种方法有同样的效果; 表示取出df中15(不包括5)361 df.iloc[1:5,3:6] 
2 df.iloc[[1,2,3,4],[3,4,5]] 
# 另外 df.iloc[0]、df.iloc[1]、df.iloc[-1] 分别表示第一行、第二行、最后一行
# 同理df.iloc[:,0]、df.iloc[:,1]、df.iloc[:,-1] 分别表示第一列、第二列、最后一列

loc的使用范围要远高于iloc, loc也能够做到iloc的切片取数, 除了df.loc[-1]
loc使用情况:
使用切片、索引、列名称查找
按条件(bool)查找

比如:

pandas中iloc、loc的用法和区别
时间:2020-03-17
本文章向大家介绍pandas中iloc、loc的用法和区别,主要包括pandas中iloc、loc的用法和区别使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

 
loc和iloc的区别,这两个有点容易混淆,因此需要特殊方式来加强记忆

总结:

1. loc使用范围比iloc更广更实用,loc可以使用切片、名称(index,columns)、也可以切片和名称混合使用;但是loc不能使用不存在的索引来充当切片取值,-1

2. iloc只能用整数来取数

推荐使用loc


iloc: i可以看着int,因此iloc就是用数字(int)来取数据的.
iloc使用情况: 使用整数通过切片等方式取数
比如:


# 切片
# 下面两种方法有同样的效果; 表示取出df中15(不包括5)361 df.iloc[1:5,3:6] 
2 df.iloc[[1,2,3,4],[3,4,5]] 
# 另外 df.iloc[0]、df.iloc[1]、df.iloc[-1] 分别表示第一行、第二行、最后一行
# 同理df.iloc[:,0]、df.iloc[:,1]、df.iloc[:,-1] 分别表示第一列、第二列、最后一列
 

loc的使用范围要远高于iloc, loc也能够做到iloc的切片取数, 除了df.loc[-1]
loc使用情况:
使用切片、索引、列名称查找
按条件(bool)查找

比如:

1 # 切片
2 hy_data.loc[2:4,]
3 hy_data.loc[[0,1,2,3],:]
4 # 切片和名称混合
5 hy_data.loc[2:4,'用户编号']
6 # 按条件取数
7 # 表示取出df中“行业分类”列值的长度等于6的所有行
8 hy_data.loc[hy_data['行业分类'].str.len() == 6, :]

loc——通过行标签索引行数据
iloc——通过行号索引行数据
ix——通过行标签或者行号索引行数据(基于loc和iloc 的混合)
标签切片,如’a’:‘c’,与序列切片如0:2不同,后者不包含index=2的元素,前者包含结束标签’c’所在的行。
布尔类型数组作为标签,例如[True, False]等价于[‘a’,‘c’]

1.loc

import numpy as np
import pandas as pd
from pandas import *
from numpy import *
 
data=DataFrame(np.arange(16).reshape(4,4),index=list("ABCD"),columns=list("wxyz"))
print(data)
#    w   x   y   z
#A   0   1   2   3
#B   4   5   6   7
#C   8   9  10  11
#D  12  13  14  15
 
#loc
#行的选取
print(data.loc["A"])
print(type(data.loc["A"]))
#w    0
#x    1
#y    2
#z    3
#Name: A, dtype: int32
#<class 'pandas.core.series.Series'>
 
print(data.loc[["A"]])
print(type(data.loc[["A"]]))
#   w  x  y  z
#A  0  1  2  3
#<class 'pandas.core.frame.DataFrame'>
#综上,[]返回Series,[[]]返回DataFrame
 
print(data.loc["A","w"])
print(type(data.loc["A","w"]))
#0
#<class 'numpy.int32'>
 
print(data.loc[:,"w"])
print(type(data.loc[:,"w"]))
#A     0
#B     4
#C     8
#D    12
#Name: w, dtype: int32
#<class 'pandas.core.series.Series'>
 
print(data.loc["A":"C"])
print(type(data.loc["A":"C"]))
#   w  x   y   z
#A  0  1   2   3
#B  4  5   6   7
#C  8  9  10  11
#<class 'pandas.core.frame.DataFrame'>
 
print(data.loc["A":"C","w":"y"])
print(type(data.loc["A":"C","w":"y"]))
#   w  x   y
#A  0  1   2
#B  4  5   6
#C  8  9  10
#<class 'pandas.core.frame.DataFrame'>
 
print(data.loc[["A","C"],["w","y"]])
print(type(data.loc[["A","C"],["w","y"]]))
#   w   y
#A  0   2
#C  8  10
#<class 'pandas.core.frame.DataFrame'>
 
print(data.loc[:,["w","y"]])
print(type(data.loc[:,["w","y"]]))
#    w   y
#A   0   2
#B   4   6
#C   8  10
#D  12  14
#<class 'pandas.core.frame.DataFrame'>
 
#列的选取
print(data["w"])#等同于print(data.loc[:,"w"])
#A     0
#B     4
#C     8
#D    12
#Name: w, dtype: int32
print(data.loc[:,"w"])
#A     0
#B     4
#C     8
#D    12
#Name: w, dtype: int32
print(data["w"].equals(data.loc[:,"w"]))#True
 
#根据特殊条件选取行列
print(data["w"]>5)
#A    False
#B    False
#C     True
#D     True
#Name: w, dtype: bool
 
print(data.loc[data["w"]>5])
#    w   x   y   z
#C   8   9  10  11
#D  12  13  14  15
print(data.loc[data["w"]>5,"w"])
print(type(data.loc[data["w"]>5,"w"]))
#C     8
#D    12
#Name: w, dtype: int32
#<class 'pandas.core.series.Series'>
print(data.loc[data["w"]>5,["w"]])
print(type(data.loc[data["w"]>5,["w"]]))
#    w
#C   8
#D  12
#<class 'pandas.core.frame.DataFrame'>
print(data["w"]==0)
print(data.loc[lambda data:data["w"]==0])
print(type(data.loc[lambda data:data["w"]==0]))
#A     True
#B    False
#C    False
#D    False
#Name: w, dtype: bool
#   w  x  y  z
#A  0  1  2  3
#<class 'pandas.core.frame.DataFrame'>
 
#loc赋值
print(data)
#    w   x   y   z
#A   0   1   2   3
#B   4   5   6   7
#C   8   9  10  11
#D  12  13  14  15
data.loc[["A","C"],["w","x"]]=999
print(data)
#     w    x   y   z
#A  999  999   2   3
#B    4    5   6   7
#C  999  999  10  11
#D   12   13  14  15
 

2.iloc

data=DataFrame(np.arange(16).reshape(4,4),index=list("ABCD"),columns=list("wxyz"))
print(data)
#    w   x   y   z
#A   0   1   2   3
#B   4   5   6   7
#C   8   9  10  11
#D  12  13  14  15
 
print(data.iloc[0])
print(type(data.iloc[0]))
#w    0
#x    1
#y    2
#z    3
#Name: A, dtype: int32
#<class 'pandas.core.series.Series'>
#print(data.iloc["A"])报错
 
#print(data.loc[0])报错
print(data.loc[["A"]])
print(type(data.loc["A"]))
#   w  x  y  z
#A  0  1  2  3
#<class 'pandas.core.series.Series'>

3.iloc和loc差别
iloc是按照行数取值,而loc按着index名取值

data=DataFrame(np.arange(16).reshape(4,4),index=list("1234"),columns=list("wxyz"))
print(data)
#    w   x   y   z
#1   0   1   2   3
#2   4   5   6   7
#3   8   9  10  11
#4  12  13  14  15
print(data.iloc[0])
#w    0
#x    1
#y    2
#z    3
#Name: 1, dtype: int32
#print(data.loc[0])报错
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值