pyspark性能调优参数

20220427

config("spark.debug.maxToStringFields", "100")
表最大的字段数量

20220311

参数调节
把executor数量调小,其他参数值调大,不容易报错

一.指定spark executor 数量的公式
executor 数量 = spark.cores.max/spark.executor.cores
spark.cores.max 是指你的spark程序需要的总核数
spark.executor.cores 是指每个executor需要的核数
二.指定并行的task数量
spark.default.parallelism
参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
参数调优建议:Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。
三. 命令示例
1
spark-submit --class com.cjh.test.WordCount --conf spark.default.parallelism=12 --conf spark.executor.memory=800m --conf spark.executor.cores=2 --conf spark.cores.max=6 my.jar
四.其他调优参数
spark.storage.memoryFraction
参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
spark.shuffle.memoryFraction
参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。
参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

spark.spark.default.parallelism与sql.shuffle.partitions的设置:

Spark中RDD对应有partition的概念,每个partition都会对应一个task,task越多,在处理大规模数据的时候,就会越有效率。但是并不是task越多越好,如果平时测试,或者数据量没有那么大,则没有必要task数量太多。

我的第一个query程序,有200个task,我改成了50个,节约了1s左右。
参数可以通过spark_home/conf/spark-default.conf配置文件设置:
spark.sql.shuffle.partitions 50
spark.default.parallelism 10
上边两个参数,第一个是针对spark sql的task数量,我的程序逻辑是将rdd首先转换成dataframe,然后进行query,所以对应第一个参数。
而如果程序是非sql则第二个参数生效。

SparkContext中默认有defaultMinPartitions指定最小的分区数;
def defaultMinPartitions: Int = math.min(defaultParallelism, 2)
SparkContext中生成RDD的接口中往往指定的是minPartitions最小分区数目。

https://www.cnblogs.com/hadoop-dev/p/6669232.html
spark分区数,task数目,core数,worker节点个数,excutor数量梳理

在这里插入图片描述
作者:王燚光
https://www.zhihu.com/question/33270495/answer/934

输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为Block。
当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片,称为InputSplit,注意InputSplit不能跨越文件。
随后将为这些输入分片生成具体的Task。InputSplit与Task是一一对应的关系。
随后这些具体的Task每个都会被分配到集群上的某个节点的某个Executor去执行。

每个节点可以起一个或多个Executor。
每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
每个Task执行的结果就是生成了目标RDD的一个partiton。

注意: 这里的core是虚拟的core而不是机器的物理CPU核,可以理解为就是Executor的一个工作线程。

而 Task被执行的并发度 = Executor数目 * 每个Executor核数。

至于partition的数目:

对于数据读入阶段,例如sc.textFile,输入文件被划分为多少InputSplit就会需要多少初始Task。
在Map阶段partition数目保持不变。
在Reduce阶段,RDD的聚合会触发shuffle操作,聚合后的RDD的partition数目跟具体操作有关,例如repartition操作会聚合成指定分区数,还有一些算子是可配置的。
RDD在计算的时候,每个分区都会起一个task,所以rdd的分区数目决定了总的的task数目。
申请的计算节点(Executor)数目和每个计算节点核数,决定了你同一时刻可以并行执行的task。
比如的RDD有100个分区,那么计算的时候就会生成100个task,你的资源配置为10个计算节点,每个两2个核,同一时刻可以并行的task数目为20,计算这个RDD就需要5个轮次。
如果计算资源不变,你有101个task的话,就需要6个轮次,在最后一轮中,只有一个task在执行,其余核都在空转。
如果资源不变,你的RDD只有2个分区,那么同一时刻只有2个task运行,其余18个核空转,造成资源浪费。这就是在spark调优中,增大RDD分区数目,增大任务并行度的做法。

引用https://www.cnblogs.com/hadoop-dev/p/6669232.html

引用https://blog.csdn.net/wangguohe/article/details/80645978

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PySpark中,我们可以使用网格搜索、随机搜索和贝叶斯优化等算法进行超参数调优来优化随机森林模型的性能。超参数调优是通过调整模型的超参数来优化模型的学习过程或结构,这些超参数在训练过程中不会被学习到。 一个常见的超参数调优方法是网格搜索。网格搜索是指在给定的超参数范围内,穷举所有可能的组合,并通过交叉验证来评估每个模型的性能,最终选择性能最好的超参数组合作为最佳模型。在PySpark中,可以使用`ParamGridBuilder`类来定义超参数的网格范围,然后使用`CrossValidator`类进行交叉验证。 另一种超参数调优的方法是随机搜索。随机搜索是指在给定的超参数范围内,随机选择一组超参数,并通过交叉验证来评估模型的性能。通过多次随机选择和评估,可以找到性能较好的超参数组合。在PySpark中,可以使用`RandomSearch`类来进行随机搜索。 此外,贝叶斯优化也是一种常用的超参数调优方法。贝叶斯优化通过构建一个模型来估计超参数与模型性能之间的关系,并使用贝叶斯推断来选择下一个最有可能导致性能提升的超参数组合。在PySpark中,可以使用`mlflow`库的`hyperopt`模块来进行贝叶斯优化。 综上所述,PySpark中的超参数调优可以通过网格搜索、随机搜索和贝叶斯优化等算法来进行。这些方法可以帮助我们找到最佳的超参数组合,从而优化随机森林模型的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [《大数据机器学习实践探索》 ---- 使用spark MLlib进行机器学习(3.超参数调优:树模型调优)](https://blog.csdn.net/wangyaninglm/article/details/116177170)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值