pandas中groupby()方法 as_index属性的使用

print各种可能性

import pandas as pd

df = pd.DataFrame(data = {'book':['bk1','bk1','bk2','bk2','bk3'],
'price':['12','12','5','5','45']})
print(df)
print(df.groupby('book',as_index = True).sum())
print(df.groupby('book',as_index = False).sum())

output:

  books  price
0   bk1     12
1   bk1     12
2   bk1     12
3   bk2     15
4   bk2     15
5   bk3     17

       price
books       
bk1       36
bk2       30
bk3       17

  books  price
0   bk1     36
1   bk2     30
2   bk3     17

当使用as_index = Truegroupby()中,key中的属性会作为新的index在dataframe中。
把column设置成index的好处有:

  1. 速度快,当使用基于index的查找方式时,eg. df.loc['bk1],这样不需要去遍历整个book列去查找’bk1‘,而是计算’bk1‘的哈希值,然后快速定位。
  2. 较容易as_index=True,可以使用df.loc['bk1'] 而不是df.loc[df.books=='bk1'].前者的代码更短且速度更快
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值