深度学习Python
上进的菜鸟
这个作者很懒,什么都没留下…
展开
-
Encoder-Decoder(有待编写)
先占个坑,有空更新https://blog.csdn.net/u014595019/article/details/52826423https://blog.csdn.net/mounty_fsc/article/details/78498517https://machinelearningmastery.com/encoder-decoder-long-short-term-memo...转载 2018-12-20 15:42:09 · 396 阅读 · 0 评论 -
keras之dropout
1,在input第一层之间加droppout2.在hiddenlayer中加W_constraint=maxnorm(3)是原始论文里面建议的认为系数最好不要超过3import numpyimport pandasfrom keras.models import Sequentialfrom keras.layers import Densefrom keras.layers...翻译 2018-12-31 19:41:31 · 15022 阅读 · 1 评论 -
keras--标准化的另一种形式
注意这一种形式和之前时间序列不一样,这个响应值为分类变量,我们只对输入x进行标准化,而之前时间序列是x和y标准化,所以最后y还要inverse.对于不需要inverse的有个更简单的方法1.分类问题结合sklearnimport numpyimport pandasfrom keras.models import Sequentialfrom keras.layers im...翻译 2018-12-31 18:58:24 · 1132 阅读 · 3 评论 -
keras和传统sklearn api结合实现k-fold、CV
1.实现k-fold这里有个KerasClassifier/KerasRegressor可以使用,但是使用之前我们得建个函数creat_model,然后传给参数build_fn2.用cv选择参数但是第二个一定要谨慎使用,因为计算量巨大,大的proj就不要用了参考:JB博士的deep_learning with python 57页...翻译 2018-12-31 16:30:34 · 1335 阅读 · 0 评论 -
keras两个API
1.累加APIfrom keras.models import Sequentialfrom keras.layers import Densemodel = Sequential()model.add(Dense(2, input_dim=1))model.add(Dense(1))但是他有很多限制For example, it is not straightforward...翻译 2018-12-30 21:41:45 · 256 阅读 · 0 评论 -
时间序列--加入有用的特征
这里以一维时序为例1.加入上一个、或几个时期的数据shift函数可以实现,参考连接:df['t-1']=df['t'].shift(1) #创建了和t之后一项的序列,同等长度,前面的第一个变成了NA df['t-1']=df['t'].shift(-1) # 提前一项,最后一项为nan2.我们可以通过滑动窗口中的值计算汇总统计信息,并将这些值作为特性包含在数据集中。也许最有用的是...转载 2018-12-23 15:47:27 · 1174 阅读 · 0 评论 -
时间序列预测之keras
'''多变量时间序列预测'''import osos.getcwd()os.chdir('C:\\Users\\87671\\Desktop\\比特魔方')from pandas import read_csvfrom datetime import datetimefrom numpy import concatenatefrom matplotlib import py...原创 2018-12-16 20:50:45 · 1284 阅读 · 0 评论 -
第二章:张量基本介绍+一个基本框架
from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data()# 1.张量的三个属性print(train_images.ndim) # 轴的个数 3print(train_images.shape) # 形状 (600...翻译 2018-12-15 20:37:58 · 321 阅读 · 0 评论 -
文本 +RNN、LSTM一个框架
from keras.datasets import imdbfrom keras import preprocessingmax_features = 10000 # 作为特征的单词个数maxlen = 500 # 截断文本从而只有20个词(x_train, y_train),(x_test,y_test) = imdb....翻译 2018-12-16 11:10:30 · 249 阅读 · 0 评论 -
时序总结(单变量、多变量、一步、多步)
原创 2018-12-20 19:48:28 · 5843 阅读 · 0 评论 -
时间序列(单变量/多变量+多个步预测)
'''用之前时间预测往后不止是一步,而是多步'''from numpy import array # split a univariate sequence into samplesdef split_sequence(sequence, n_steps_in, n_steps_out): X, y = list(), list() for i in range(len(seq...翻译 2018-12-20 19:42:02 · 17793 阅读 · 20 评论 -
时间序列(多个变量+一步)
'''PART 1:多个x时间变量用于预测y的时间但是y不作为x的一份子'''# 创造数据from numpy import arrayfrom numpy import hstackfrom keras.models import Sequentialfrom keras.layers import LSTMfrom keras.layers import Dense# d...翻译 2018-12-20 19:40:47 · 3723 阅读 · 6 评论 -
时间序列(单个时序+预测下一步)
"""Created on Wed Dec 19 21:02:24 2018@author: 87671"""'''Univariate LSTM Models(只有一个时间序列)参考链接:https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/'''#...翻译 2018-12-20 19:11:28 · 4258 阅读 · 3 评论 -
dropout
1、dropout是神经网络中最有效的正则化方法;2、传统的dropout在rnn中效果不是很好;dropout在rnn中使用的效果不是很好,因为rnn有放大噪音的功能,所以会反过来伤害模型的学习能力;3、在rnn中使用dropout要放在时间步的连接上,即cell与cell之间传递,而不是神经元;对于rnn的部分不进行dropout,也就是说从t-1时候的状态传递到t时刻进行计算时,这个...转载 2018-12-25 21:41:14 · 2426 阅读 · 0 评论