Hihocoder 约瑟夫问题

这篇博客探讨了约瑟夫问题的解决方案,包括一个直观的循环链表模拟法和两种递推算法。递推公式f[n]=(f[n-1]+K) mod n用于计算当有n个候选人时最后当选者的编号。对于大N的情况,通过减少N的规模,调整递推方式以优化计算。算法的时间复杂度可达O(N),空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

http://hihocoder.com/problemset/problem/1296
小Hi:这个问题其实还蛮有名的,它被称为约瑟夫的问题

最直观的解法是用循环链表模拟报数、淘汰的过程,复杂度是O(NM)。

今天我们来学习两种更高效的算法,一种是递推,另一种也是递推。

第一种递推的公式为:

令f[n]表示当有n个候选人时,最后当选者的编号。

f[1]=0
f[n]=( f[n1]+K ) mod n

接下来我们用数学归纳法来证明这个递推公式的正确性:

(1) f[1] = 0

显然当只有1个候选人时,该候选人就是当选者,并且他的编号为0。

(2) f[n] = (f[n - 1] + K) mod n

假设我们已经求解出了f[n - 1],并且保证f[n - 1]的值是正确的。

现在先将n个人按照编号进行排序:

0 1 2 3 … n-1

那么第一次被淘汰的人编号一定是K-1(假设K < n,若K > n则为(K-1) mod n)。将被选中的人标记为”#”:

0 1 2 3 … K-2 # K K+1 K+2 … n-1

第二轮报数时,起点为K这个候选人。并且只剩下n-1个选手。假如此时把k+1看作0’,k+2看作1’…

则对应有:

 0     1 2 3 ... K-2  # K  K+1 K+2 ... n-1
n-K'             n-2'   0'  1'  2' ... n-K-1'

此时在 0’, 1’, … , n-2’上再进行一次K报数的选择。而f[n-1]的值已经求得,因此我们可以直接求得当选者的编号s’。

但是,该编号s’是在n-1个候选人报数时的编号,并不等于n个人时的编号,所以我们还需要将s’转换为对应的s。

通过观察,s和s’编号相对偏移了K,又因为是在环中,因此得到s = (s’+K) mod n。

即f[n] = (f[n-1] + k) mod n。

至此递推公式的两个式子我们均证明了其正确性,则对于任意给定的n,我们可以使用该递推式求得f[n],写成伪代码为:

Josephus(N, K):
    f[1] = 0
    For i = 2 .. N
        f[i] = (f[i - 1] + K) mod i
    End For
    Return f[N]

同时由于计算f[i]时,只会用到f[i-1],因此我们还可以将f[]的空间节约,改进后的代码为:

Josephus(N, K):
    ret = 0
    For i = 2 .. N
        ret = (ret + K) mod i
    End For
    Return ret

该算法的时间复杂度为O(N),空间复杂度为O(1)。对于N不是很大的数据来说,可以解决。

小Ho:要是N特别大呢?

小Hi:那么我们就可以用第二种递推,解决的思路仍然和上面相同,而区别在于我们每次减少的N的规模不再是1。

同样用一个例子来说明,初始N=10,K=4:

初始序列:

0 1 2 3 4 5 6 7 8 9

当7号进行过报数之后:

0 1 2 - 4 5 6 - 8 9

在这里一轮报数当中,有两名候选人退出了。而对于任意一个N,K来说,退出的候选人数量为N/K(“/”运算表示整除,即带余除法取商)

由于此时起点为8,则等价于:

2 3 4 - 5 6 7 - 0 1

因此我们仍然可以从f[8]的结果来推导出f[10]的结果。

但需要注意的是,此时f[10]的结果并不一定直接等于(f[8] + 8) mod 10。

若f[8]=2,对于原来的序列来说对应了0,(2+8) mod 10 = 0,是对应的;若f[8]=6,则有(6+8) mod 10 = 4,然而实际上应该对应的编号为5。

这是因为在序列(2 3 4 - 5 6 7 - 0 1)中,数字并不是连续的。

因此我们需要根据f[8]的值进行分类讨论。假设f[8]=s,则根据s和N mod K的大小关系有两种情况:

s=sN mod K+N,s<N mod K
s=sN mod K+sN mod KK1,sN mod K
怎么理解上面的公式呢

数字分块示意图

将 N个数分层若干个大小为K的块,最后一个块的大小为 N mod K

第一次将去掉每一个块中的最后一个数字,也就是去掉图中的红色位置的数字,剩下每个块的大小为K-1,剩余的总的数字个数为N-N/K, 最后一个块的第一个数字在新一轮的过程中为第一个数字,位置为0

f[NN/K]=s 那么这个位置s对应的原来的N个数的位置是多少呢?

如果 s<N mod K , 那么s位置上的数对应于为原来N个数的最后一个块(大小为N mod K)的其中一个数。即

s=s+(NN mod K)=sN mod K+N

如果 sN mod K , 那么s位置上的数对应于前面若干块中的一块。首先计算s在前面的若干块的哪一块,即第 sN mod KK1 块。

然后我们计算其具体位置。 观测到现在的位置s相对于原来N个数对应的块,每一个块都少了一个1个数, sN mod KK1 块少了 sN mod KK1 个数。

因此其位置为 s=sN mod K+sN mod KK1,sN mod K

此外还有一个问题,由于我们不断的在减小N的规模,最后一定会将N减少到小于K,此时N/K=0。

因此当N小于K时,就只能采用第一种递推的算法来计算了。

最后优化方法的伪代码为:

Josephus(N, K):
    If (N == 1) Then
        Return 0
    End If
    If (N < K) Then
        ret = 0
        For i = 2 .. N
            ret = (ret + K) mod i
        End For
        Return ret
    End If 
    ret = Josephus(N - N / K, K);
    If (ret < N mod K) Then 
        ret = ret - N mod K + N
    Else
        ret = ret - N mod K + (ret - N mod K) / (K - 1)
    End If
    Return ret

改进后的算法可以很快将N的规模减小到K,对于K不是很大的问题能够快速求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值