来看排列组合嘛

保证是你见过最简洁明了的排列组合文章

费马小定理

如果p是一个质数,而整数a不是p的倍数,则有 a p − 1 ≡ 1 a^{p-1}≡1 ap11 (mod p)
证明:略

乘法逆元

简单的可以理解成一个数 对p取模 的倒数

证明:

若b、m互质,并且b | a,则存在一个整数x,使得a / b ≡ a * x (mod m),则称x为b的模m乘法逆元,记为 b − 1 b^{-1} b1(mod m)。

因为 a / b = a ∗ b − 1 ≡ a / b ∗ b ∗ b − 1 a / b = a * b^{-1}≡ a/b * b * b^{-1} a/b=ab1a/bbb1,所以 b ∗ b − 1 ≡ 1 b * b^{-1} ≡1 bb11(mod m)

如果m是质数,(后文用p代表m)并且b < p,根据费马小定理 b p − 1 ≡ 1 b^{p-1}≡1 bp11(mod p),
b ∗ b − 2 ≡ 1 b* b^{-2} ≡ 1 bb21(mod p)。
因此,当模数p为质数的时候, b p − 2 b^{p-2} bp2即为b的乘法逆元

结论:

  • 当模数p与b互质的时候, b p − 2 b^{p-2} bp2即为b的乘法逆元
  • 通常用于除法中求模

如果p不是素数的情况,需要求逆元:
a / b a / b a/b (mod m) = x / d x/d x/d(mod d ∗ m d* m dm)

组合的简单的写法

看别人的没看明白,顺着自己思路写了
也没什么好讲的,就是公式的写法。

组合的公式: C n m = n ! m ! ( n − m ) ! C^m_n = \frac{n!}{ m!(n-m)!} Cnm=m!(nm)!n!

根据上文的逆元
公式可以改写成:
C n m = n ! m ! ( n − m ) ! = n ! ∗ i n v [ m ] % m o d ∗ i n v [ n − m ] % m o d C^m_n =\frac{n!}{m!(n-m)!} = n! * inv[m]\%mod * inv[n-m]\%mod Cnm=m!(nm)!n!=n!inv[m]%modinv[nm]%mod
此处inv[m]已经是m阶乘的inv

问题如下:
给定n,m 求 C n m C^m_n Cnm,结果对 1 0 9 + 7 10^9+7 109+7取模

思路是打表 c[n] = n!,以及对应的逆元inv[n]。然后输出结果

#include <iostream>
#define ll long long
using namespace std;
const int N = 1e5+5,mod= 1e9+7;
int a,b,t;
ll c[N], inv[N];

ll qpow(ll a,int b){
    ll ans = 1;
    while(b){
        if(b & 1) ans = ans * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ans;
}
inline ll C(ll a,ll b,ll p){
	return c[a] * inv[b] % p * inv[a-b] % p;
	 //  a / b  % mod == a * inv[b] % mod;
}
int main(){
    c[0] = 1;
    for(int i=1;i<=N;i++) c[i] = c[i-1] * i % mod;//  求排列数
    
    inv[N-1] = qpow(c[N-1], mod - 2);//  求排列数的逆元	b的逆元就是 b^(mod-2)
    for(int i = N-2;i >= 0;i--)	inv[i] = inv[i + 1] * (i + 1) % mod;
    
    cin >> t;
    while(t--){
        cin >> a >> b;
        cout << C(a, b, mod) << "\n";
    }
    return 0;
}

Lucas定理

求值 C a b C^b_a Cab mod p
适用于:数论中求大组合数取模.
比如:
1 ≤ b ≤ a ≤ 1 0 18 10^{18} 1018
1≤ p ≤ 1 0 5 10^5 105

Lucas定理完整内容:
C n m = ∏ i = 0 k C n i m i C_n^m = \prod\limits^{k}_{i=0}C^{m_i}_{n_i} Cnm=i=0kCnimi(mod p)
n = n k p k + n k − 1 p k − 1 + . . . + n 1 p + n 0 n = n_kp^k+ n_{k-1}p^{k-1}+...+n_1p+n_0 n=nkpk+nk1pk1+...+n1p+n0
m = m k p k + m k − 1 p k − 1 + . . . + m 1 p + m 0 m = m_kp^k+m_{k-1}p^{k-1}+...+m_1p+m_0 m=mkpk+mk1pk1+...+m1p+m0

简易写法:
C a b ≡ C a % p b % p ∗ C a / p b / p % p C^b_a≡ C^{b\%p}_{a\%p} * C^{b/p}_{a/p} \%p CabCa%pb%pCa/pb/p%p

其中 C a / p b / p C^{b/p}_{a/p} Ca/pb/p可以递归

那说起递归可能你比我还懂啊。

代码

ll lucas(ll a, ll b, ll p){
    if(a < p && b < p) return C(a, b, p);
    return C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在Stata中,我们可以使用循环和条件判断来实现排列组合的穷举。 对于排列问题,即从一组元素中选取若干个元素按照一定顺序进行排列,可以使用循环和条件判断来实现。假设有n个元素,要求选取m个元素进行排列,则可以使用两层嵌套的循环,外层循环控制第一个位置的选取,内层循环控制剩余位置的选取。通过循环中的条件判断来确保每个元素只能在每个位置出现一次。 对于组合问题,即从一组元素中选取若干个元素进行组合,不考虑元素的顺序,同样可以使用循环和条件判断来实现。假设有n个元素,要求选取m个元素进行组合,则可以使用递归的思想,每次循环时选取一个元素,然后在剩余的元素中再次选取下一个元素,直到选取满足m个元素为止。 在Stata中,可以使用forvalues命令来实现循环,同时使用if命令来进行条件判断。具体的实现步骤可以参考以下伪代码: 1. 对于排列问题: forvalues i = 1/ n { forvalues j = 1/ n { if j!=i { //进行相关的操作,比如输出排列结果 } } } 2. 对于组合问题: forvalues i = 1/ n { //进行相关的操作,比如输出组合结果 if m>1 { //递归调用自身,选取下一个元素 //参数为(i+1)/ n,m-1 } } 注意,上述伪代码仅供参考,具体的实现方式还需要根据具体问题进行调整。另外,Stata也提供了一些用于排列组合的相关命令和函数,可以进一步简化操作。 ### 回答2: 在Stata中,我们可以使用循环和条件语句来进行排列组合的穷举。 首先,让我们来看一个简单的示例,假设我们有3个数字:1、2和3,我们想要列出所有可能的组合。我们可以使用循环语句`forval`循环遍历每个数字,然后使用嵌套的循环语句`forval`再次遍历其余的数字。我们可以将组合结果存储在一个新的变量中,最后打印出来。 以下是用于排列组合穷举的Stata代码: ```stata // 清除所有变量和数据集 clear // 设置数字列表 local number_list 1 2 3 // 创建空变量来存储结果 gen combination = "" // 循环遍历每个数字 foreach num1 of local number_list { // 嵌套循环遍历其余的数字 foreach num2 of local number_list { foreach num3 of local number_list { // 将数字组合起来并存储在新变量中 local combination "`num1' `num2' `num3'" // 打印出每个组合 di "`combination'" } } } ``` 运行以上代码,我们将获得以下输出: ``` 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 3 1 1 3 1 2 3 1 3 3 2 1 3 2 2 3 2 3 3 3 1 3 3 2 3 3 3 ``` 这样,我们就得到了所有可能的排列组合。感谢使用Stata进行排列组合穷举是一个相对简单直观的方法! ### 回答3: stata是一种常用的统计软件,它能够进行各种数据分析和统计操作。虽然stata本身没有内置排列组合穷举的函数,但我们可以使用stata的一些功能和命令来实现排列组合穷举的功能。 首先,我们可以使用`collapse`命令将数据集中的多个变量合并为一个变量。例如,如果我们有三个变量A、B和C,我们可以使用以下命令将它们合并为一个变量"ABC": ``` collapse (mean) A B C, by(variables_to_group_by) ``` 接下来,我们可以使用`egen`命令创建一个新的变量,其中包含排列或组合的所有可能。例如,如果我们想要生成A、B和C三个变量的所有排列组合,我们可以使用以下命令: ``` egen newvar = concat(A, B, C), permutation ``` 如果我们只想要生成排列,可以使用`permutation`选项;如果想要生成组合,可以使用`combination`选项。 最后,我们可以使用`keep if`命令根据我们的需要筛选出特定的排列组合。例如,如果我们只想要保留A、B和C三个变量中的某些特定值的排列组合,我们可以使用以下命令: ``` keep if A == x & B == y & C == z ``` 其中,x、y和z是我们要筛选的特定值。 总结起来,尽管stata本身没有排列组合穷举的专门函数,但我们可以使用stata的一些功能和命令来实现这个功能。首先,使用`collapse`命令将多个变量合并为一个变量,然后使用`egen`命令生成所有可能的排列或组合,最后使用`keep if`命令筛选出需要的排列组合。通过这些步骤,我们可以在stata中实现排列组合穷举的操作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值