Python CSV 模块通关秘籍:数据表格处理不求人

Python CSV 模块通关秘籍:数据表格处理不求人

对话实录

小白:(苦恼)我导出的CSV用Excel打开全是乱码!
专家:(递上秘籍)(掏出魔法书)**编码问题!用utf-8-sigma保存!

CSV格式初体验

CSV后缀的文件是标准文件格式,可以通过文本编辑器或者excel表格打开,

使用非常广泛;使用文本编辑器打开后,每一行都以英文逗号隔开。

文本编辑器打开

Excel表打开

基础操作,初窥门径

1. 模块导入

Python 内置了csv模块,无需额外安装,直接导入即可:

import csv

2.常用函数速查表

函数 / 类名

作用

示例场景

csv.reader

按行读取 CSV 文件

逐行解析日志文件

csv.writer

按行写入 CSV 文件

批量写入用户数据

csv.DictReader

以字典形式读取 CSV 文件

按字段名提取学生成绩

csv.DictWriter

以字典形式写入 CSV 文件

生成结构化报表

3.使用csv.reader逐行读取CSV文件

with open('data.csv', 'r', encoding='utf-8') as f:
    reader = csv.reader(f)
    for row in reader:
        print(row)  
# 输出内容类似 ['name', 'age'], ['王三', '21'], ['李四', '28']

4. 使用csv.writer写入CSV文件

data = [
    ['Charlie', 35],
    ['David', 40]
]
with open('new_data.csv', 'w', encoding='utf-8-sig', newline='') as f:
    writer = csv.writer(f)
    writer.writerows(data)

专家提醒:使用utf-8-sig编码解决Excel的乱码问题!

5. 使用csv.DictReader以字典形式读取 CSV 文件

with open('data.csv', 'r', encoding='utf-8') as f:
    reader = csv.DictReader(f)
    reader.fieldnames = ['a','b']
    for row in reader:
        print(row['a'])  # 输出 '王三', '李四'

专家提醒:csv_read.fieldnames = ['a','b'] 表示设置每一行数据对应的字典的key值,如果不设置,会使用csv第一行的内容作为字典的key

6. 使用csv.DictWriter以字典形式写入 CSV 文件

fieldnames = ['name', 'age']
with open('new_dict_data.csv', 'w', encoding='utf-8', newline='') as f:
    writer = csv.DictWriter(f, fieldnames=fieldnames)
    writer.writeheader()
    writer.writerow({'name': 'Eve', 'age': 28})
    writer.writerows([{'name': 'Eve', 'age': 28}])

专家提醒:使用csv.DictWriter()函数,参数fieldnames定义字典的key,通过writeheader函数写入csv文件的第一行,通过writerows函数写入列表中的所有字典对象的value值或者writerow函数写入单个字典对象。

实际案例

案例 1:按列提取数据

从scores.csv中提取数学成绩:

math_scores = []
with open('scores.csv', 'r', encoding='utf-8') as f:
    reader = csv.DictReader(f)
    for row in reader:
        math_scores.append(int(row['math']))
print(math_scores)  # 输出 [85, 78]

案例 2:数据清洗与转换

将日期格式dd/mm/yyyy转为yyyy-mm-dd:

new_data = []
with open('dates.csv', 'r', encoding='utf-8') as f:
    reader = csv.reader(f)
    for row in reader:
        date_parts = row[0].split('/')
        new_date = f"{date_parts[2]}-{date_parts[1]}-{date_parts[0]}"
        new_data.append([new_date])

with open('new_dates.csv', 'w', encoding='utf-8', newline='') as f:
    writer = csv.writer(f)
    writer.writerows(new_data)

案例 3:合并多个 CSV 文件

合并file1.csv和file2.csv:

merged_data = []
for filename in ['file1.csv', 'file2.csv']:
    with open(filename, 'r', encoding='utf-8') as f:
        reader = csv.reader(f)
        merged_data.extend([row for row in reader])

with open('merged.csv', 'w', encoding='utf-8', newline='') as f:
    writer = csv.writer(f)
    writer.writerows(merged_data)

闭坑指南

换行符问题

错误示范(Windows 下多出空行):

with open('test.csv', 'w', encoding='utf-8') as f:
    writer = csv.writer(f)
    writer.writerow(['test'])

正确做法(添加newline=''):

with open('test.csv', 'w', encoding='utf-8', newline='') as f:
    writer = csv.writer(f)
    writer.writerow(['test'])

数据类型转换

错误示范(直接比较字符串):

with open('scores.csv', 'r', encoding='utf-8') as f:
    reader = csv.DictReader(f)
    for row in reader:
        if row['math'] > 80:  # ❌ 字符串比较错误
            print(row)

正确做法(转换为数值):

with open('scores.csv', 'r', encoding='utf-8') as f:
    reader = csv.DictReader(f)
    for row in reader:
        if int(row['math']) > 80:
            print(row)

专家工具箱

1. 处理复杂分隔符

读取制表符分隔的文件:

with open('tab_separated.csv', 'r', encoding='utf-8') as f:
    reader = csv.reader(f, delimiter='\t')
    for row in reader:
        print(row)

2 自定义CSV格式

csv.register_dialect('my_dialect',
                    delimiter='|',
                    quoting=csv.QUOTE_MINIMAL)

with open('data.csv', 'w') as f:
    writer = csv.writer(f, dialect='my_dialect')

3. 处理百万级大文件

def process_large_file(file_path):
    with open(file_path) as f:
        reader = csv.reader(f)
        for row in reader:
            process(row)  # 逐行处理,避免内存爆炸

4. 与Pandas配合使用

import pandas as pd

# 读取CSV
df = pd.read_csv('big_data.csv')

# 写入CSV
df.to_csv('output.csv', index=False)

小白:(豁然开朗)原来 CSV 模块能这么高效处理数据!
专家:(微笑)记住:掌握 CSV 模块,数据表格处理就能得心应手!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科雷learning

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值