畅通工程续
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 48533 Accepted Submission(s): 18024
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
Author
linle
Source
首先推荐该视频:http://www.bilibili.com/video/av4108914/
该算法用于求最短路,利用临接矩阵存储边。其实是一个dp的过程(居然是dp啊!)
套路如下:
已知起点和终点,n个点,m条边
设一个map【i】【j】存储 i 到 j 点的距离,初始设为无穷大。点到自身设置为0
读入m条边
for(k = 0;k<n;k++){
for(i=0;i<n;i++){
for(j=0;j<n;j++){
map[i][j] = min(map[i][j],map[i][k]+map[k][j]);
}
}
}
其实这是一个动态规划,dp [ k ] [ i ] [ j ]记录的是经过k这个点的时候 i 点到j点的最短路径
初始状态可以认为是dp [0][ i ][ j ]。然后每次规划dp [ k ][ i ][ j ] = min(dp[ k-1 ][ i ][ j ](不经过k这个点),dp[k - 1][ i ][ k ]+dp[k - 1][ k ][ j ])
然后就把它简化成二维的玩意儿啦
真是阿姆斯特朗回旋加速阿姆斯特朗炮啊!
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <map>
using namespace std;
#define INF 0x3f3f3f
const int maxn = 210;
int n,m;
int s,e;
int mp[maxn][maxn];
void init(){
int i,j;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(i==j){
mp[i][j] = 0;
}else{
mp[i][j] = INF;
}
}
}
}
bool floyd(){
int i,j,k;
for(k = 0;k<n;k++){
for(i=0;i<n;i++){
for(j=0;j<n;j++){
mp[i][j] = min(mp[i][j],mp[i][k]+mp[k][j]);
}
}
}
if(mp[s][e]==INF){
return false;
}else{
return true;
}
}
int main(){
while (~scanf("%d%d",&n,&m)) {
int i,j;
init();
int a,b,c;
for(i=1;i<=m;i++){
scanf("%d%d%d",&a,&b,&c);
mp[a][b] = min(mp[a][b],c);
mp[b][a] = min(mp[b][a],c);
}
scanf("%d%d",&s,&e);
if(floyd()){
printf("%d\n",mp[s][e]);
}else{
printf("-1\n");
}
}
return 0;
}