华中农大HZAUOJ1104 Sum and XOR 异或瞎搞

本文介绍了一种高效算法来解决SumandXOR问题,该问题涉及一系列整数的操作,包括求和与异或运算。通过巧妙地利用位运算特性,避免了使用线段树等复杂数据结构,实现了对大量数据的有效处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1104: Sum and XOR

Time Limit: 5 Sec   Memory Limit: 128 MB
Submit: 994   Solved: 56
[ Submit][ Status][ Web Board]

Description

     Dr. Zeng is good at calculating sum of some numbers . Today , Yifan want to give a difficult work to Dr.Zeng .So,he told Dr.Zeng that he will get N numbers a1…an, and M options .When the option is 1 , Dr.Zeng should calculate the sum of the numbers . And the when the option is 2 , he will give Dr.Zeng a number D , then , change every ai into (ai xor d).

    Dr.Zeng is too lazy to calculate it ,so could you please help him ?

Input

    First line contains two integers N,M(0<N<5000000 , 0<M<100000)
    The second line contains N integer a1…an .
    Then the following M line . For each line , first a number op , if op == 2 ,there will be a number D.
    All the number is less then 2^25 .

Output

For each option 1 ,output a number ,the sum of a1…an.

Sample Input

2 3
1 2
1
2 5
1

Sample Output

3
11

HINT

Source

题意:告诉你n个数,现在做m个操作,包括以下两个操作:

1、求n个数的和

2、给一个数d,用d去异或n个数

一开始想用线段树来做。。真是智障啊。。。因为是对点的更新,线段树还是太费时了。

异或是对位进行操作的。。。所以遇到异或问题的时候一定要想想分解到位的时候是否能搞。。。

把n个数分解成二进制,然后统计每一位上有几个1(自己写的时候以为零的个数也要统计,后来发现是不用的,改变操作只关心1的个数),求总和的时候因为都知道每个位上有多少个1,所以总和很好算。

当给了d要求用其异或每个数的时候,也把d换成二进制,d的二进制表示上,仅当该位是1时,要将我们n个数统计出来的每一位1的个数和零的个数交换。

wonderful学长在比赛的时候就想出来了,强啊。。。。虽然我已经知道怎么做。。。但是自己写的时候还是mle+wa。。。。mle是因为代码不够优雅,wa是细节问题。。。好在迫切地想要睡觉发现了问题。。。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 5000010;
int maxLen;
long long two[30];
void init(){
    int i;
    long long ans = 1;
    for(i=0;i<=30;i++){
        two[i] = ans;
        ans *= 2;
    }
}
long long a[maxn];
int in[30],one[30];
void change(long long a,int index){
    int p = -1;
    if(index==-1){
        while (a!=0) {
            in[++p] = a%2;
            a /= 2;
        }
        return;
    }
    while(a!=0){
        ++p;
        if(a%2){
            one[p]++;
        }
        a /= 2;
    }
}
int n,m;
void myXOR(int len){
    int i;
    for(i=0;i<=len;i++){
        if(in[i]==1){
            one[i] = n-one[i];
        }
    }
}
long long getSum(){
    long long ans = 0;
    int i;
    for(i=0;i<=maxLen;i++){
        ans += one[i]*two[i];
    }
    return ans;
}
int main(){
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
    int i,j;
    init();
    while (~scanf("%d%d",&n,&m)) {
        long long now = 0;
        long long sum = 0;
        for(i=1;i<=n;i++){
            scanf("%lld",&a[i]);
            sum += a[i];
            now = max(a[i],now);
        }
        for(i=0;i<=30;i++){
            if(two[i]>=now){
                maxLen = i;
                break;
            }
        }
        memset(one, 0, sizeof(one));
        for(i=1;i<=n;i++){
            change(a[i], i);
        }
        int op,nowLen;
        long long z;
        for(i=1;i<=m;i++){
            scanf("%d",&op);
            if(op==1){
                printf("%lld\n",getSum());
            }else{
                scanf("%lld",&z);
                memset(in, 0, sizeof(in));
                change(z, -1);
                for(j=0;j<=30;j++){
                    if(two[j]>=z){
                        nowLen = j;
                        break;
                    }
                }
                maxLen = max(maxLen,nowLen);
                myXOR(nowLen);
            }
        }
    }
    return 0;
}










### 回答1: 16进制异或XOR)计算器是一个在线工具,用于对16进制数进行异或计算。异或运算是一种位运算,它将两个相应位的二进制数进行比较,相同为0,不同为1。该计算器可以帮助用户快速执行16进制异或计算,无需手动进行转换。 使用这个计算器非常简单。首先,用户需要输入两个16进制数,可以用0-9和A-F表示。然后,用户点击计算按钮,系统将自动执行异或运算并给出结果。结果将以16进制形式显示在计算器界面上。 为了说明这个计算器的使用,我们来看一个例子。假设用户输入的两个16进制数分别为A2和C4。点击计算按钮后,计算器将执行以下运算: A2 XOR C4 = 66 在这个例子中,A2和C4的二进制表示为10100010和11000100。进行异或运算后,结果为01100110,即十进制的66。计算器将显示结果66在界面上。 使用这个16进制异或计算器,用户可以快速进行异或计算,无需手动转换位数。这个工具对于需要处理16进制数的人来说是非常实用的。无论是学生还是专业人士,都可以受益于这个在线计算器的方便和准确性。 ### 回答2: 16进制 xor异或计算器是一种在线工具,用于计算16进制数之间的异或操作。 在正常的计算机运算中,异或操作是指当两个数的二进制位不同时返回1,相同时返回0。而在16进制中,数位包括0-9和A-F,对应二进制位的0000-1111。 使用16进制 xor异或计算器可以通过输入两个16进制数,直接得出它们异或的结果。计算过程非常简单,只需要将两个数的相应位进行异或,并将结果转换为16进制数即可。 举个例子,假设要计算16进制数A3和16进制数C7的异或结果。首先,将A3转换为二进制数10100011,将C7转换为二进制数11000111。然后,按位进行异或操作:1 ⊕ 1 = 0,0 ⊕ 0 = 0,1 ⊕ 0 = 1,0 ⊕ 0 = 0,0 ⊕ 0 = 0,1 ⊕ 1 = 0,1 ⊕ 0 = 1,1 ⊕ 0 = 1。最后,将得到的二进制数10101000转换为16进制数A8,即为结果。 通过16进制 xor异或计算器,在线输入A3和C7,可以直接得到结果A8。 这个工具的使用非常简单,方便快捷。它适用于需要进行16进制异或计算的场景,比如在编程、加密等领域中。无论是初学者还是专业人士,都可以通过16进制 xor异或计算器在线完成异或计算,提高工作效率。 ### 回答3: 16进制xor异或运算计算器在线是一种在计算机科学中常用的工具。它可以用于执行16进制数的异或运算。异或运算是一种逻辑运算,用于比较两个值,并返回其相异的位。异或运算的结果是一个新的16进制数,它的每一位都表示两个输入数对应位的异或结果。 通过在线的16进制xor异或计算器,我们可以将两个16进制数输入到相应的输入框中。计算器会自动执行异或运算,并在输出框中显示结果。输入的16进制数可以使用数字0-9和字母A-F来表示。计算器还可以处理不同长度的输入,使得用户可以进行不同位数的异或运算。 这个16进制xor异或计算器在线的好处是它的易用性和方便性。用户无需编写任何代码或使用复杂的计算方法,只需输入要计算的16进制数即可获得结果。计算器还清晰地显示输入和输出,方便用户检查计算结果。此外,由于在线的性质,用户可以随时在任何设备上访问这个计算器,无需安装任何软件。 综上所述,16进制xor异或计算器在线是一个便捷实用的工具。它可以帮助用户进行16进制数的异或运算,无需复杂的计算步骤。无论是学生、程序员还是数学爱好者,都可以在需要时使用这个计算器来进行16进制xor异或运算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值