数据结构—树和二叉树

一、树的介绍

树型结构是一种非线性的数据结构,它具有一个称为根节点(root node)的特殊节点,以及一些称为子节点(child nodes)的节点。每个节点可以有零个或多个子节点,但只能有一个父节点(parent node),除了根节点没有父节点。在树型结构中,节点之间的连接关系表示了它们之间的层次关系。

树型结构常用于表示具有层次关系的数据,例如文件系统、组织结构、目录结构等。它提供了一种便捷的方式来组织和访问数据。

树型结构的应用非常广泛,例如在计算机科学中,树型结构被用于实现搜索算法(如二叉搜索树)、存储和检索数据(如B树、堆)、表达抽象语法树等。在现实生活中,树型结构也有很多应用,比如家谱、图书分类、产品组织关系等。

二、树的定义和基本术语

树:是n个结点的有限集,当0==n时称为空树,我们不讨论空树。

根结点:树的最顶层的结点,一棵树有且仅有一个。

子树:一棵树除根结点外,剩余的是若干个互不相交的有限集,每一个集合本身又是棵树,称称为根的子树。

结点的度:树的结点包含一个数据元素及若干个指向其子树的分支,结点拥有的子树数量称为结点的度。

叶子结点:结构的度为0,被称为叶子结点或终端结点。

分支结点:结构的度不为0,被称为分支结点或非终端结点,也被称为内部结点。

树的度:是指树内各结点度的最大值。

密度:指的是一棵树中,所有结点的总数。

孩子、双亲、兄弟、祖先、子孙:结点的子树称为该结点的孩子,而该结点是孩子结点的双亲,拥有共同双亲的结点互为兄弟,从双亲结点往上,直到根结点都称为孩子结点的祖先结点,以某结点为根的子树中的任一结点都被称为该结点的子孙。

层数、深度、高度:从根结点开始定义,根为第一层、根的孩子为第二层依次类推,树中结点的最大层数被称为树的深度或高度,双亲在同一层的结点互为堂兄弟。

有序树和无序树:将树中结点的各子树看成从左到右是有序次,即不能交换(顺序有意义,表达一些含义),则称该树为有序树,否则称为无序树。

森林:若干个棵互不相交的树的集合称为森林,对树中每个结点而言,其子树集合就是森林。

就逻辑结构而言,任何一棵树都是一个二元组 Tree = (root,F),其中root是数据元素,称做树的根结点,F是若干棵子树构成的森林。

普通树的存储(了解)

树可以顺序存储、链式存储,也可以混合存储,由于存储的信息不同,有以下表示方式:

  • 双亲表示法

    • 顺序存储,记录双亲的下标,方便找双亲,不方便找孩子

  • 孩子表示法

    • 顺序存储:用数组存储孩子下标,浪费空间

    • 链式存储:用链表存储孩子下标,节约空间

    • 方便找孩子,不方便找双亲

  • 兄弟表示法:

    • 记录第一个孩子节点,链式存储所有兄弟节点

    • 方便找兄弟,不方便找双亲

总结:普通树不常用、一般转换成二叉树使用。

三、二叉树的定义和性质

二叉树:

是一种特殊的树型结构,也就是每个结点最多有两棵子树(二叉树中不存在度大于2的结点),并且二叉树的子树有左右之分,顺序不能颠倒。

满二叉树:

若一棵树的层数为k,它总结点数是2^k-1,则这棵树就是满二叉树。

完全二叉树:

若一棵树的层数为k,它前k-1层的总结点数是2^(k-1)-1,第k层的结点按照从左往右的顺序排列,则这棵树就是完全二叉树。

二叉树的重要性质:
性质1:

在二叉树的第i层上,最多有2^(i-1)个结点。

性质2:

深夜为k的二叉树,最多有2^k-1个节点。

性质3:

对于任何一棵二叉树,如果叶子结点的数量为n0,度为2结点的数量为n2,则n0=n2+1;

总数n 叶子节点n0 求度1的节点数 n1 = n- n0-(n0-1) 度2节点n2 = n0-1

性质4:

具有n个结点的完全二叉树的高度为(log2n)+1。

性质5:

有一个n个结点的完全二叉树,结点按照从上到下从左到右的顺序排序为1~n。

1、i > 1时,i/2就是它的双亲结点。

2、i*2是i的左子树,当i*2>n时,则i没有左子树。

3、2*i+1是i的右子树,2*i+1>n时,则i没有右子树。

四、树与二叉树的转换

树与二叉树之间的转换有两种常见的操作:将一棵树转换为二叉树(树的编码),以及将一个二叉树还原为原始树(解码)。

将树转换为二叉树的一种常见方法是使用所谓的"左孩子-右兄弟"表示方法,也称为"二叉树表示法"。该方法通过对树的每个节点进行转换来构建二叉树:

  1. 对于树的每个节点,将它的第一个子节点作为二叉树的左孩子。

  2. 将该节点的其他子节点依次链接为左孩子的右兄弟节点。

  3. 对于树的每个节点进行递归处理,直到将整个树转换为二叉树。

这种转换方法可以保留原始树的结构和层次关系,在二叉树中的左子树仍然表示该节点的子节点,右子树表示同一层级的其他兄弟节点。

将二叉树还原为原始树的操作称为解码。解码过程与转换过程相反:

  1. 对于二叉树的每个节点,将它的左孩子作为解码后的节点的第一个子节点。

  2. 将该节点的右孩子链接为解码后的节点的其他兄弟节点。

  3. 对于二叉树的每个节点进行递归处理,直到将整个二叉树解码为原始树。

需要注意的是,树与二叉树之间的转换并不是唯一的,还可以使用其他方法进行编码和解码。这两种方法只是最常见的转换方式之一,具体的转换方式可能会根据具体需求和使用场景有所不同。

注意:参看树与二叉树的转换图解.pdf

五、二叉树的遍历

前序遍历:

1、判断二叉树是否为空,若二叉树为空,则不操作。

2、访问根结点

3、前序遍历左子树

4、前序遍历右子树

中序遍历:

1、判断二叉树是否为空,若二叉树为空,则不操作。

2、中序遍历左子树

3、访问根结点

4、中序遍历右子树

后序遍历:

1、判断二叉树是否为空,若二叉树为空,则不操作。

2、后序遍历左子树

3、后序遍历右子树

4、访问根结点

注意:前中后由根节点决定,并且左右子树的次序不会改变。

注意:根据 前序+中序 或者 中序+后序 还原一棵树,前序+后序无法还原(无法判断出根节点的左右子树)

层序遍历:

按照从上到下、从左到右的顺序遍历二叉树,需要与队列结构配合,普通的顺序队列即可,不需要链式队列或循环队列。

六、二叉树的顺序表示与实现

前提:由于顺序存储需要根据元素的相对位置确定关系,所有先把二叉树补成完全二叉树,之前空的点可以使用特殊的值表示,并把完全二叉树的层序遍历结果存储到数组中,只有补成了完全二叉树,才能根据性质5的公式对二叉树进行相关操作。

注意:性质5的公式是按照结点的序号设计的,在使用时要注意数组下标与序号的转换。

七、二叉树的链式表示与实现

有两种创建链式二叉树的方式:

方式一:需要给每个度不为2的结点补充一些空白子结点,使得树中除了空白结点其它结点的度全为2,然后以前序的方式遍历二叉树,然后以遍历的结果创建二叉树。

方式二:不需要对二叉做任何改变,以前序+中序或中序+后序的遍历结果创建二叉树。

八、二叉搜索树的表示与实现

二叉搜索树(Binary Search Tree,简称BST)是一种特殊的二叉树,它具有以下特点:

  1. 对于任意节点,其左子树中的值都小于该节点的值,右子树中的值都大于该节点的值。

  2. 左子树和右子树也都是二叉搜索树。

由于以上特点,二叉搜索树可以快速地进行插入、删除和查找等操作。

插入操作: 当向二叉搜索树中插入一个新的节点时,需要从根节点开始比较节点的值,并根据比较结果选择左子树或右子树继续进行比较,直到找到一个空的位置插入新节点。

删除操作: 删除节点时,首先需要找到待删除的节点。如果待删除的节点没有子节点,可以直接删除即可。如果待删除的节点有一个子节点,可以用子节点替换待删除的节点。如果待删除的节点有两个子节点,可以找到其右子树中的最小节点,即右子树中的最左节点,将其值复制到待删除节点,并删除该最小节点。

查找操作: 查找操作在二叉搜索树中非常高效。从根节点开始,若目标值等于当前节点的值,则找到了目标节点。若目标值小于当前节点的值,则继续在左子树中查找,若目标值大于当前节点的值,则继续在右子树中查找,直到找到目标节点或遍历到空节点。

二叉搜索树的缺点:

二叉搜索树的元素添加顺序会影响二叉搜索树的形状,二叉搜索树的形状会影响它的操作效率,在极端情况下,二叉搜索树可能会呈单枝状分布,使用速度接近单向链表,这种极端情况出现在的原因就添加的元素基本有序。

九、线索二叉树

  • 规律:在有n个节点的链式二叉树中必定存在 n+1 个空指针

  • 链式二叉树中有很多的空指针,可以让这些空指针指向前一个节点\后一个节点,从而在有序遍历(中序遍历)二叉树时,不需要使用递归而通过循环即可以完成,并且效率要比递归快得多

  • 一定是搜索二叉树

线索二叉树的结构
typedef struct TreeNode
{
    int data;   //  数据域
    struct TreeNode* left;
    bool lflag;     //  左子树是否是线索  为真时,左子树是线索 指向前一个节点
    struct TreeNode* right;
    bool rflag;     //  右子树是否是线索  为真时,右子树是线索 指向下一个节点
}TreeNode;
构建线索二叉树
  • 首先需要有一颗搜索二叉树,然后通过中序遍历并生成线索,通过检查右子树是否为空来决定是否生成线索,让右子树指向下一个节点。

  • 当构成线索二叉树后 ,可以通过循环遍历的方式有序遍历二叉树,不需要中序递归遍历也可以

十、选择树(了解)

  • 是一种完全二叉树,把待比较的数据存储在最后一层,根节点的值是左右子树中其中一个,是它们的最大值或最小值,选择树的功能是快速地找出最大值或最小值

十一、堆

堆结构介绍

大顶堆(大根堆):根节点的值比左右子树都大,同时左右子树都满足该规则

小顶堆(小根堆):根节点的值比左右子树都小,同时左右子树都满足该规则

堆结构是一种特殊的完全二叉树,它与堆内存是两种概念

堆结构的根节点一定是整棵树中的最大值、最小值

堆结构如何存储:

首先堆结构是一种完全二叉树,并且需要在使用的时候频繁地找双亲节点进行比较,所以链式不好找双亲节点,因此堆结构非常适合用顺序存储,通过二叉树性质5来实现找双亲:

性质5:

有一个n个结点的完全二叉树,结点按照从上到下从左到右的顺序排序为1~n。

1、i > 1时,i/2就是它的双亲结点。

2、i*2是i的左子树,当i*2>n时,则i没有左子树。

3、2*i+1是i的右子树,2*i+1>n时,则i没有右子树

  • 23
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值