【数据集】【YOLO】【目标检测】垃圾分类识别数据集 2020 张,YOLO垃圾分类识别算法实战训练教程,yolo垃圾分类识别毕业设计。

 一、数据集介绍

【数据集】垃圾分类识别数据集 2020 张,目标检测,包含YOLO/VOC格式标注

数据集中包含5种分类names:['glass', 'metal', 'paper', 'plastic', 'uht carton'],表示"玻璃瓶、易拉罐、纸、塑料、纸盒"

数据集图片来自国内外网站、网络爬虫等;

可用于环卫垃圾分类识别

检测场景为城市道路、公园、办公场所、垃圾回收工厂等需要垃圾分类的场景,可以应用于智能垃圾桶、垃圾回收站等场景,实现垃圾的自动化分类和回收

文章底部名片或主页私信获取数据集~

  ​​

  ​​

  

1、数据概述

垃圾分类识别的重要性

 随着城市化进程的加快和人口的增长,垃圾产生量急剧增加。据世界银行的报告显示,全球每年平均会出现近40亿吨垃圾,且预计2025年垃圾将增加70%。以中国为例,截止2020年末,中国人口达到14.02亿,垃圾总产量达到2.3亿吨。传统的垃圾分类方式,如人工分类或定时定点清理,已难以满足高效、准确的分类和处理需求。因此,基于计算机视觉和深度学习的垃圾分类技术应运而生。

基于YOLO的垃圾分类识别算法

 基于YOLO的垃圾分类识别目标检测算法具有广泛的应用前景。在城市管理中,该技术可以嵌入到城市垃圾管理系统中,帮助城市规划者更好地了解垃圾生成和分布情况,制定更有效的垃圾管理策略。此外,该技术还可以应用于智能垃圾桶、垃圾回收站等场景,实现垃圾的自动化分类和回收。

该数据集含有 2020 张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试城市道路、公园、办公场所、垃圾回收工厂等需要垃圾分类的场景进行垃圾分类识别

图片格式为jpg格式,标注格式分别为:

YOLO:txt

VOC:xml

数据集均为手工标注,保证标注精确度。

2、数据集文件结构

trash_class/

——test/

————Annotations/

————images/

————labels/

——train/

————Annotations/

————images/

————labels/

——valid/

————Annotations/

————images/

————labels/

——data.yaml

  • 该数据集已划分训练集样本,分别是:test目录(测试集)、train目录(训练集)、valid目录(验证集);
  • Annotations文件夹为Pascal VOC格式的XML文件 ;
  • images文件夹为jpg格式的数据样本;
  • labels文件夹是YOLO格式的TXT文件;
  • data.yaml是数据集配置文件,包含垃圾分类识别的目标分类和加载路径。

​​​​

  ​​​​

  ​​​

  ​​​​

Annotations目录下的xml文件内容如下:

<annotation>
	<folder></folder>
	<filename>can-20-15-_jpg.rf.b0da075fae92fc1c246d778d386b05d1.jpg</filename>
	<path>can-20-15-_jpg.rf.b0da075fae92fc1c246d778d386b05d1.jpg</path>
	<source>
		<database>roboflow.com</database>
	</source>
	<size>
		<width>640</width>
		<height>640</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>metal</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<occluded>0</occluded>
		<bndbox>
			<xmin>361</xmin>
			<xmax>639</xmax>
			<ymin>130</ymin>
			<ymax>525</ymax>
		</bndbox>
	</object>
</annotation>

3、数据集适用范围 

  • 目标检测场景,无人机识别,监控摄像头识别
  • yolo训练模型或其他模型
  • 城市道路、公园、办公场所、垃圾回收工厂等需要垃圾分类的场景
  • 可用于智能垃圾桶、垃圾回收站等场景,实现垃圾的自动化分类和回收

4、数据集标注结果 

  ​​​​​​  ​​​​

  ​​​​  ​​​

  ​​​​​​​​​​​​​​​​​​​​​​​​​  ​​​​​​​

4.1、数据集内容 

  1. 多角度场景:行人视角,摄像头视角;
  2. 标注内容:names: ['glass', 'metal', 'paper', 'plastic', 'uht carton'],总计5个分类;
  3. 图片总量:2020 张图片数据;
  4. 标注类型:含有Pascal VOC XML格式和yolo TXT格式;

5、训练过程

5.1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

——Annotations/   //存放xml文件

——images/          //存放jpg图像

——imageSets/

——labels/

整体项目结构如下所示:

​​​​​

5.2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

import os
import random

trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

5.3、数据集格式化处理

在ultralytics-main目录下创建一个voc_label.py文件,用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。

import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ['glass', 'metal', 'paper', 'plastic', 'uht carton'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h


def convert_annotation(image_id):
    in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('data/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text),
             float(xmlbox.find('xmax').text),
             float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()
for image_set in sets:
    if not os.path.exists('data/labels/'):
        os.makedirs('data/labels/')
    image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
    list_file = open('data/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

5.4、修改数据集配置文件

在ultralytics-main目录下创建一个data.yaml文件

train: data/train.txt
val: data/val.txt
test: data/test.txt

nc: 5
names: ['glass', 'metal', 'paper', 'plastic', 'uht carton']

5.5、执行命令

执行train.py

model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)

也可以在终端执行下述命令:

yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

5.6、模型预测 

你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。

代码如下:

import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径

# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) 

# Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)

# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 inference on the frame
        # results = model(frame)
        results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)

        results[0].names[0] = "道路积水"
        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Write the annotated frame to the output file
        out.write(annotated_frame)

        # Display the annotated frame (optional)
        cv2.imshow("YOLOv8 Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()

也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:

yolo predict model="best.pt" source='demo.jpg'

6、获取数据集 

文章底部名片或主页私信获取数据集~

二、基于QT的目标检测可视化界面

1、环境配置

# 安装torch环境
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装PySide6依赖项
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装opencv-python依赖项
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

2、使用说明

​​

界面功能介绍:

  • 原视频/图片区:上半部分左边区域为原视频/图片展示区;
  • 检测区:上半部分右边区域为检测结果输出展示区
  • 文本框:打印输出操作日志,其中告警以json格式输出,包含标签框的坐标,标签名称等
  • 加载模型:下拉框绑定本地文件路径,按钮加载路径下的模型文件;
  • 置信度阈值自定义检测区的置信度阈值,可以通过滑动条的方式设置
  • 文件上传:选择目标文件,包含JPG格式和MP4格式
  • 开始检测:执行检测程序;
  • 停止:终止检测程序;

 3、预测效果展示

3.1、图片检测

​​

切换置信度再次执行:

​​

上图左下区域可以看到json格式的告警信息,用于反馈实际作业中的管理系统,为管理员提供道路养护决策 。

3.2、视频检测 

​​

3.3、日志文本框

​​​​​

4、前端代码 

class MyWindow(QtWidgets.QMainWindow):
    def __init__(self):
        super().__init__()

        self.init_gui()
        self.model = None
        self.timer = QtCore.QTimer()
        self.timer1 = QtCore.QTimer()
        self.cap = None
        self.video = None
        self.file_path = None
        self.base_name = None
        self.timer1.timeout.connect(self.video_show)

    def init_gui(self):
        self.folder_path = "model_file"  # 自定义修改:设置文件夹路径
        self.setFixedSize(1300, 650)
        self.setWindowTitle('目标检测')  # 自定义修改:设置窗口名称
        self.setWindowIcon(QIcon("111.jpg"))  # 自定义修改:设置窗口图标
        central_widget = QtWidgets.QWidget(self)
        self.setCentralWidget(central_widget)
        main_layout = QtWidgets.QVBoxLayout(central_widget)

        # 界面上半部分: 视频框
        topLayout = QtWidgets.QHBoxLayout()
        self.oriVideoLabel = QtWidgets.QLabel(self)
        
        # 界面下半部分: 输出框 和 按钮
        groupBox = QtWidgets.QGroupBox(self)
        groupBox.setStyleSheet('QGroupBox {border: 0px solid #D7E2F9;}')
        bottomLayout = QtWidgets.QHBoxLayout(groupBox)
        main_layout.addWidget(groupBox)
        btnLayout = QtWidgets.QHBoxLayout()
        btn1Layout = QtWidgets.QVBoxLayout()
        btn2Layout = QtWidgets.QVBoxLayout()
        btn3Layout = QtWidgets.QVBoxLayout()

        # 创建日志打印文本框
        self.outputField = QtWidgets.QTextBrowser()
        self.outputField.setFixedSize(530, 180)
        self.outputField.setStyleSheet('font-size: 13px; font-family: "Microsoft YaHei"; background-color: #f0f0f0; border: 2px solid #ccc; border-radius: 10px;')
        self.detectlabel = QtWidgets.QLabel(self)
        self.oriVideoLabel.setFixedSize(530, 400)
        self.detectlabel.setFixedSize(530, 400)
        self.oriVideoLabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top:75px;')
        self.detectlabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top: 75px;')
        topLayout.addWidget(self.oriVideoLabel)
        topLayout.addWidget(self.detectlabel)
        main_layout.addLayout(topLayout)

5、代码获取

YOLO可视化界面

 更多数据集请查看置顶博文!

以上内容均为原创。

### 垃圾分类数据集下载 对于参与2025工程实践与创新能力大赛的需求,存在一个特定的垃圾分类数据集[^1]。该数据集涵盖了四大类垃圾——有害垃圾、可回收垃圾、厨余垃圾和其他垃圾,总计约有四千图片样本。 #### 数据集详情 - **类别划分** - **有害垃圾**:包括但不限于电池(如1号、2号、5号)、过期药品及其内部包装等; - **可回收垃圾**:例如易拉罐、小型矿泉水瓶等; - **厨余垃圾**:像小土豆、已切割的白萝卜和胡萝卜(这些物品被特意调整至接近电池大小以便识别训练),以及其他有机废弃物; - **其他垃圾**:诸如瓷片、鹅卵石(大约为小土豆大小)以及砖块等难以归入前三者的物件。 为了获取上述提到的数据集,通常这类资源会托管于公共平台或是由官方竞赛主办方提供链接用于参赛者下载准备。然而,在当前环境下无法直接给出具体的网址或文件路径来实现一键下载功能。建议访问比赛官方网站查询最新的资料分发渠道或者通过学术搜索引擎查找相似主题下的开源项目仓库,其中可能包含了所需的图像集合。 如果希望构建自己的数据集,则可以考虑利用网络爬虫技术收集公开可用的相关照片并按照既定标准进行标注处理。Python编程语言提供了丰富的库支持这项工作,下面是一个简单的基于`requests`和`BeautifulSoup`库抓取网页上图片的例子: ```python import requests from bs4 import BeautifulSoup import os def download_images(url, folder_name): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') images = [] for img in soup.find_all('img'): images.append(img['src']) if not os.path.exists(folder_name): os.makedirs(folder_name) for i, image in enumerate(images): try: img_data = requests.get(image).content with open(f"{folder_name}/image_{i}.jpg", 'wb') as handler: handler.write(img_data) except Exception as e: print(e) download_images("http://example.com/gallery-of-waste-items", "waste_dataset") ``` 此脚本仅作为概念验证用途,请根据实际需求修改目标URL及保存位置等内容后再运行测试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值