- 博客(30)
- 收藏
- 关注
数据集YOLO目标检测道路交通标志识别数据集 3630 张,YOLO交通路牌识别算法实战训练教程,yolo道路标识检测毕业设计,Pascalvoc 的 xml 格式标注好的,已划分训练、测试、验证集
数据集内容:
1. 多角度场景:监控摄像头视角,行人视角;
2. 标注内容:6个分类,['No_Entry', 'No_Left_Turn', 'No_Parking', 'No_Right_Turn', 'No_U_Turn', 'Stop'],分别为禁止通行、禁止左转、禁止停车、禁止右转、禁止掉头、减速慢行等;
3. 图片总量:3630 张图片数据;
4. 标注类型:含有Pascal VOC格式;
数据集结构:
TrafficSigns_voc/
——test/
————.jpg
————.xml
——train/
————.jpg
————.xml
——valid/
————.jpg
————.xml
训练测试验证集内分别存放一一对应的jpg图像和xml标注文件。
道路交通标识检测算法的必要性:
1. 交通安全需求升级
随着全球汽车保有量突破15亿辆,交通事故已成为全球第九大死因。中国交通标志检测数据显示,约30%的交通事故与驾驶员未及时识别交通标志相关。例如,未遵守限速标志导致的超速事故占比达18%,未注意禁止转向标志引发的侧翻事故占比达12%。YOLO算法通过实时识别限速、禁止通行、警示标志等,可降低驾驶员反应时间需求,为自动驾驶系统提供关键决策依据。
2. 自动驾驶技术突破
L4级自动驾驶系统要求环境感知模块在100ms内完成交通标志识别。特斯拉Autopilot、Waymo等系统已将YOLO作为核心检测算法,其单阶段检测架构比Faster R-CNN等两阶段算法快3-5倍。YOLOv8在TT100K中国交通标志数据集上实现96.7%的mAP(均值平均精度),较YOLOv5提升8.2%,满足自动驾驶对实时性与准确性的双重严苛要求。
2025-07-03
数据集YOLO目标检测道路交通标识识别数据集 3630 张,YOLO交通路牌识别算法实战训练教程,yolo道路标识检测毕业设计,yolo的 txt 格式标注好的,已划分训练、测试、验证集
数据集内容:
1. 多角度场景:监控摄像头视角,行人视角;
2. 标注内容:6个分类,['No_Entry', 'No_Left_Turn', 'No_Parking', 'No_Right_Turn', 'No_U_Turn', 'Stop'],分别为禁止通行、禁止左转、禁止停车、禁止右转、禁止掉头、减速慢行等;
3. 图片总量:3630 张图片数据;
4. 标注类型:含有yolo TXT格式;
数据集结构:
TrafficSigns_yolo/
——test/
————images/
————labels/
——train/
————images/
————labels/
——valid/
————images/
————labels/
——data.yaml
道路交通标识检测算法的必要性:
1. 交通安全需求升级
随着全球汽车保有量突破15亿辆,交通事故已成为全球第九大死因。中国交通标志检测数据显示,约30%的交通事故与驾驶员未及时识别交通标志相关。例如,未遵守限速标志导致的超速事故占比达18%,未注意禁止转向标志引发的侧翻事故占比达12%。YOLO算法通过实时识别限速、禁止通行、警示标志等,可降低驾驶员反应时间需求,为自动驾驶系统提供关键决策依据。
2. 自动驾驶技术突破
L4级自动驾驶系统要求环境感知模块在100ms内完成交通标志识别。特斯拉Autopilot、Waymo等系统已将YOLO作为核心检测算法,其单阶段检测架构比Faster R-CNN等两阶段算法快3-5倍。YOLOv8在TT100K中国交通标志数据集上实现96.7%的mAP(均值平均精度),较YOLOv5提升8.2%,满足自动驾驶对实时性与准确性的双重严苛要求。
2025-07-03
数据集YOLO目标检测猫狗识别数据集 2435张,Yolo格式数据集目标检测!
标签类别:names: ['cat', 'dog']
使用方法:
下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。
yolo格式文件转xml文件脚本可以私聊博主,也可以自行网上搜索代码执行。
2024-11-08
道路结冰数据集 1527 张,YOLO/VOC格式标注!
【数据集】道路结冰数据集 1527 张,目标检测,包含YOLO/VOC格式标注。数据集中包含两种分类,分别是:names: ['clear-road', 'ice-road']。
资源文件内包含:Annotations文件夹为Pascal VOC格式的XML文件 ,images文件夹为jpg格式的数据样本,labels文件夹是YOLO格式的TXT文件,data.yaml是数据集配置文件。
应用场景:
1、高速公路:道路结冰检测算法可以应用于高速公路的结冰预警与监控体系,提前识别出可能结冰的路段和时间点,为交通管理部门提供决策支持。
2、城市道路:通过道路结冰检测算法,可以实时监测城市道路的结冰情况,为城市交通管理提供及时、准确的信息。
3、特殊路段:道路结冰检测算法可以针对桥梁、隧道出入口等进行定制化设计,提高监测的准确性和针对性。
使用方法:
下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。
2024-11-02
数据集YOLO目标检测电动车进电梯检测数据集 97 张,Yolo格式数据集目标检测!
【数据集】【YOLO】【目标检测】电动车进电梯检测数据集 97 张,Yolo格式数据集目标检测!
标签类别:names: ['person','bicycle','motorcycle']
电动车在电梯内发生爆燃,乘客可能无法承受高温和烟雾的伤害;电动车进入电梯后,对电梯的磕碰可能导致电梯产生运行故障,缩短其使用寿命;电动车上楼后占用消防通道,若发生火灾,会阻碍人员逃生,对建筑造成损害。因此,开发一种能够实时检测并预警电动车进入电梯的系统,对于提高电梯使用安全性具有重要意义。
使用方法:
下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。
yolo格式文件转xml文件脚本可以私聊博主,也可以自行网上搜索代码执行。
2024-11-06
数据集【YOLO目标检测】道路油污检测数据集 170 张,YOLO/VOC格式标注!
标签类别:names: ['bubble', 'petrol']
资源文件内包含:资源图片数据集,YOLO格式的标注文件,data.yaml是数据集配置文件。
训练集和验证集已经完成划分!!!
道路油污识别是城市交通管理和环境保护中的重要任务。油污不仅影响道路的清洁度和美观度,还可能对车辆行驶安全构成威胁。然而,传统的油污检测方法主要依赖人工视觉检查,这种方法不仅耗时、成本高,而且结果的准确性和可重复性差。因此,开发一种自动化、智能化的油污识别系统显得尤为重要。
使用方法:
下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。
2024-11-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人