泛函分析笔记(一) 基础的集合与映射

集合


ZF集合论

Zermelo-Fraenkel 集合论是数学中最常用的公理化集合论,含选择公理时常简写为ZFC,不含选择公里时则简写为ZF。

ZF集合论的公理

    1. 同一律(外延公理):两个集合相等的充分必要条件是它们具有相同的元素,即

∀ X ∀ Y [ X = Y ⇔ ∀ z ( z ∈ X ↔ z ∈ Y ) ] \forall X \forall Y [X = Y\Leftrightarrow \forall z(z\in X\leftrightarrow z\in Y)] XY[X=Yz(zXzY)]

    1. 配对集公理:任给两个集合X和Y,都有一个恰好由它们组成的集合{X,Y},即

∀ X ∀ Y ∃ Z ( Z = { X , Y } ) \forall X \forall Y \exists Z(Z=\{X,Y\}) XYZ(Z={X,Y})

    1. 并集公理:任给一个集合X,都有一个恰好由X的元素的元素之全体所组成的集合 ∪ X \cup X X,即
      ∀ X ∃ Y ( Y = ∪ X = { a ∣ ∃ b ( b ∈ X ∧ a ∈ b ) } ) \forall X \exist Y(Y = \cup X = \{a|\exist b(b\in X \wedge a \in b )\}) XY(Y=X={ab(bXab)})
    1. 幂集公理:任给一个集合X,都有一个恰好由它的子集合的全体组成的集合P(X),即

∀ X ∃ Y ( Y = P ( X ) = { A ∣ A ∈ X } ) \forall X \exist Y (Y = P(X) = \{A|A\in X\}) XY(Y=P(X)={AAX})

    1. 无限集公理:存在一个满足如下两条要求(a)和(b)的集合X,
      (a)X含一个元素;
      (b)如果Y∈X,那么Y∪{Y}∈X。其中Y∪{Y}={Y,{Y}},即

∃ X [ ( ∃ a ( a ∈ X ) ) ∧ ( ∀ Y ( Y ∈ X → Y ∪ Y ∈ X ) ) ] \exist X [(\exist a(a\in X))\wedge (\forall Y(Y\in X \to Y \cup {Y}\in X))] X[(a(aX))(Y(YXYYX))]

    1. 分解原理:分解公理又称概括公理,应当注意到这里的表达式并非朴素集合论的概括方式。设φ(x,y₁,…,y𝗇)(1≤n<∞)是集合论语言的一个表达式。任给集合X和p₁,…,p𝗇,集合X中的那些具有性质φ[u,y₁,…,y𝗇]的元素u构成一个集合Y,即

∀ X ∀ p 1 … ∀ p n ∃ Y ( Y = u ∈ X ∣ ϕ [ u , p 1 , … , p n ] ) \forall X \forall p_1 \dots \forall p_n\exist Y (Y = {u\in X |\phi [u,p_1,\dots,p_n]}) Xp1pnY(Y=uXϕ[u,p1,,pn])

这六条公里是Zermelo在1908年引入的
后来Fraenikel又引入了映像存在原理,冯诺依曼又引入了极小原理

ZF集合论的推论

  • 子集
    子集的每个元素都在原集合中,子集可以是空集合,用 P ( X ) \mathcal P (X) P(X)表示以X的所有子集为元素的全体的集合。
  • 余集
    若X是集合 A ⊂ X A\subset X AX,则 X − A : = { x ∈ X ; x ∉ A } X-A := \{x\in X;x\notin A\} XA:={xX;x/A}是A关于X的余集
  • 乘积
    若X,Y是两个集合,则由 x ∈ X , y ∈ Y x\in X,y\in Y xX,yY组成的有序对(x,y)全体组成的集合

X × Y : = { ( x , y ) ; x ∈ X , y ∈ Y } X\times Y :=\{(x,y);x\in X,y\in Y\} X×Y:={(x,y);xX,yY}

是X和Y的乘积。

  • 集合X上的关系R是指乘积 X × X X \times X X×X的任意子集,即R由一些特定的序对(x,y)组成,其中 x ∈ X , y ∈ Y x\in X,y\in Y xX,yY

  • 集合上的等价关系是X是满足以下关系的R,其中 ( x , y ) ∈ R (x,y)\in R (x,y)R记作 x ∼ y x\sim y xy

    • 自反性:对所有的 x ∈ X x\in X xX x ∼ x x\sim x xx

    • 对称性:当 x ∼ y x\sim y xy时,有 y ∼ x y\sim x yx

    • 传递性:当 x ∼ y x\sim y xy y ∼ z y\sim z yz时, x ∼ z x\sim z xz

映射

若X和Y是两个非空集合,X到Y的映射或函数是指乘积 X x Y的一个子集f,满足对每一个x存在唯一的y使得(x,y)属于f。(欸,这个f不就是前面说的一个集合关系嘛嘿嘿)

f : X → Y 或 X → f Y f:X\to Y 或 X\stackrel{f}{\to} Y f:XYXfY

或者我们常见的函数定义

f ( x ) ∈ Y f(x)\in Y f(x)Y

特征函数

定义函数 χ A : X → R \chi_A:X\to \mathbb R χA:XR

χ A ( x ) : = { 1 , x ∈ A 0 , x ∉ A \chi_A(x):=\begin{cases} 1,&x\in A \\ 0,&x\notin A \end{cases} χA(x):={1,0,xAx/A

其为A的特征函数

f : X → Y f:X\to Y f:XY为一个映射,X的子集A在f下指向的便是Y的子集f(A),即

f ( A ) : = { y ∈ Y ; ∃ x ∈ A , y = f ( x ) } f(A):=\{y\in Y; \exist x\in A ,y=f(x)\} f(A):={yY;xA,y=f(x)}

同理,Y的子集B在f下的逆像是X的子集

f − 1 ( B ) : = { x ∈ X ; f ( x ) ∈ B } f^{-1}(B):=\{x\in X;f(x)\in B\} f1(B):={xX;f(x)B}

须知 f 不 是 P ( X ) 到 P ( Y ) 的 映 射 f不是\mathcal{P}(X)到\mathcal{P}(Y)的映射 fP(X)P(Y)

映射的一些性质

A是X的子集,B是Y的子集

  • 1. 逆像保持所有集合运算

    • B ⊂ B ~ B\subset \tilde{B} BB~ f − 1 ( B ) ⊂ f − 1 ( B ~ ) f^{-1}(B)\subset f^{-1}(\tilde{B}) f1(B)f1(B~)
    • f − 1 ( B ∪ B ~ ) = f − 1 ( B ) ∪ f − 1 ( B ~ ) f^{-1}(B\cup\tilde{B})=f^{-1}(B)\cup f^{-1}(\tilde{B}) f1(BB~)=f1(B)f1(B~)
    • f − 1 ( B ∩ B ~ ) = f − 1 ( B ) ∩ f − 1 ( B ~ ) f^{-1}(B\cap\tilde{B})=f^{-1}(B)\cap f^{-1}(\tilde{B}) f1(BB~)=f1(B)f1(B~)
    • f − 1 ( Y − B ) = X − f − 1 ( B ) f^{-1}(Y-B) = X - f^{-1}(B) f1(YB)=Xf1(B)
      但是直接像只满足
    • A ⊂ A ~ A\subset \tilde{A} AA~ f ( A ) ⊂ f ( A ~ ) f(A)\subset f(\tilde{A}) f(A)f(A~)
    • f ( A ∪ A ~ ) = f ( A ) ∪ f ( A ~ ) f(A\cup\tilde{A})=f(A)\cup f(\tilde{A}) f(AA~)=f(A)f(A~)
    • f ( A ∩ A ~ ) = f ( A ) ∩ f ( A ~ ) f(A\cap\tilde{A})=f(A)\cap f(\tilde{A}) f(AA~)=f(A)f(A~)
      相比而言少了最后一条.
  • 2. 若对于每个 y ∈ Y y\in Y yY至少存在一个 x ∈ X x\in X xX使 y = f ( x ) y = f(x) y=f(x)则f是满射

  • 3. 多对于每个 y ∈ Y y \in Y yY至多存在一个 x ∈ X x\in X xX使得 y = f ( x ) y =f(x) y=f(x) 则称之为单射

  • 4. 若 f : X → Y f:X\to Y f:XY是满射且是单射,则称其为双射,此时可以定义逆映射.

  • 5. 若 f : X → Y f:X\to Y f:XY是一个映射,A是X的子集,对每个 x ∈ A x\in A xA,令 f A ( x ) = f ( x ) f_A(x) = f(x) fA(x)=f(x)这就定义了一个映射 f A : A → Y f_A:A\to Y fA:AY,称之为f在A是的限制,记作 f ∣ A f|_A fA

  • 6. 设 g : A → Y g:A \to Y g:AY是一个映射,其中A是X的子集,如果映射 f : X → Y f:X\to Y f:XY满足 f ∣ A = g f|_A=g fA=g,则称f为g的一个延拓

  • 7. 设 f : X → Y , g : Y → Z f:X\to Y,g:Y\to Z f:XY,g:YZ是两个映射,映射 h : X → Z h:X\to Z h:XZ定义为对每个 x ∈ X , h ( x ) = g ( f ( x ) ) x\in X,h(x) = g(f(x)) xX,h(x)=g(f(x)),称h为复合映射,记作 h = g ∘ f h=g\circ f h=gf h = g f h=gf h=gf

  • 8. 设 f : X × Y → Z f:X\times Y\to Z f:X×YZ是一个映射,a是X的一个元素,定义映射 f ( a , ⋅ ) : Y → Z f(a,\cdot):Y\to Z f(a,):YZ f ( a , ⋅ ) : y ∈ Y → f ( a , y ) ∈ Z f(a,\cdot):y\in Y\to f(a,y)\in Z f(a,):yYf(a,y)Z称之为一个部分映射.

  • 9. 对映射 f : ( x , y ) ∈ X × Y → f ( x , y ) ∈ Z f:(x,y)\in X\times Y \to f(x,y)\in Z f:(x,y)X×Yf(x,y)Z分别称两个元素为第一个变元和第二个变元.

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值