AI大模型如何微调?
大家都知道,人工智能(AI)已经成为了时代的“潮流”,尤其是大模型(LLM)技术的突破,令人眼前一亮!但你知道吗?大模型的“微调”(Fine-Tuning)看似高大上,其实并没有那么复杂,真正决定成败的,还是——数据!今天,咱们就来聊聊微调背后的秘密,特别是数据的准备工作。让我们一起通过3个实战案例,帮你快速了解如何为你的AI模型准备高质量的数据集,提升模型性能,助力你的项目迈向成功!💡
01 什么是微调?
微调是对一个已经预训练好的大模型进行“调整”,使其能够更好地执行特定任务。简单来说,就是利用已有的知识,并根据新的数据对模型进行“再教育”。这种方式能够大大节省时间和成本,因为你无需从零开始训练模型。
举个例子,Athene-V2-Chat-72B通过微调提升了在Chatbot Arena中的排名,表现出色。这证明了微调技术的强大能力,只要数据准备得当,微调带来的效果不容小觑!
在AI模型的优化中,除了微调,还有一种叫做RAG(检索增强生成)的技术。两者各有千秋,我们如何选择呢?微调适合需要领域深度理解的任务,比如金融、医疗等专业领域的应用,依赖大量标注数据进行模型的再训练。RAG则更适用于需要实时或广泛背景知识的任务,例如新闻摘要、实时问答等。它结合了检索和生成的能力,实时从外部知识库获取信息并生成答案。
02 微调的核心——数据准备!
数据,才是微调的根基!质量高的数据能够帮助模型理解任务的本质,从而提升最终的表现。那么,怎样才能准备出高质量的数据集呢?这里有3个实战案例,帮你轻松搞定数据准备。
1.单轮客服对话数据:
场景:构建客服助手,帮助AI更好地理解用户问题并给出简洁明了的答案。示例数据:
{“messages”: [
{“role”: “system”, “content”: “您是一名Xbox客户支持代理,主要目标是帮助用户解决他们在Xbox设备上遇到的问题。您友好且简洁。您只提供查询的事实答案,不提供与Xbox无关的答案。”},
{“role”: “user”, “content”: “我的Xbox无法连接Wi-Fi怎么办?”},
{“role”: “assistant”, “content”: “没关系,我们一起检查您的Xbox网络设置。当您尝试连接Wi-Fi时,会发生什么情况?”}
]}
应用场景:适用于客服机器人,帮助模型掌握如何精准回答常见问题。
2.多轮对话数据:
场景:训练开放域聊天机器人,要求AI具备上下文理解能力,能够进行多轮对话。示例数据:
{“messages”: [
{“role”: “system”, “content”: “Marv是一个事实型聊天机器人,同时也具有讽刺性。”},
{“role”: “user”, “content”: “法国的首都是哪里?”},
{“role”: “assistant”, “content”: “巴黎”, “weight”: 0},
{“role”: “user”, “content”: “你能更讽刺一点吗?”},
{“role”: “assistant”, “content”: “巴黎,难道还有谁不知道吗?”, “weight”: 1}
]}
应用场景:适用于需要上下文理解和情感交互的对话型应用,帮助模型适应多轮对话的需求。
3.图文多模态数据:
场景:训练视觉和语言联合理解模型,例如图像描述生成、视觉问答等。示例数据:
{“messages”: [
{“role”: “user”, “content”: [{“type”: “text”, “text”: “这张图里有什么?”}, {“type”: “image_url”, “image_url”: {“url”: “https://example.com/seattle.jpg”}}]},
{“role”: “assistant”, “content”: “这幅图像是一幅西雅图城市天际线的水彩画,描绘了高楼大厦和标志性地标如太空针塔。”}
]}
应用场景:适用于图文理解任务,结合视觉和语言的多模态数据,帮助模型做出准确的描述。
03 为什么数据准备如此重要?
很多人觉得微调就是“调一调”就好,但其实数据准备的过程才是微调成功的关键!一个高质量的数据集能够让模型更好地理解任务背景,减少错误输出。而且,数据集的多样性、覆盖性以及一致性都会影响最终的模型效果。所以,数据准备不仅仅是一个技术活,更是一个艺术活!
04 微调成功的秘诀!
总结起来,微调成功的关键不仅在于选择合适的模型,更多的是在数据集的精心准备。这里有几个小技巧,让你微调更得心应手:
注重数据清洗:去除无关、重复或不准确的数据。
注重标注准确性:确保每个样本的标注都符合任务需求。
注重数据多样性:数据的多样性能够帮助模型更好地适应各种场景。
微调技术的核心并不在于技术本身,而是在于如何通过高质量的数据准备,让模型真正“明白”我们想要它做什么。就像一位工匠雕刻精美的作品一样,数据是模型成功的“雕刻石”。通过精心准备数据集,你的AI模型才能真正展现出强大的能力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。