为提高接待效率,减轻人工座席的服务压力,过去几年许多企业都在客户接待的过程中用上了文本机器人,并将其作为第一道服务接待。
企业的目的是,期望文本机器人能够回答大部分简单、重复、标准化的问题。但实际应用中,大多数企业的文本机器人使用效果都不理想。
以天润融通服务的一家跨国电气公司为例。
该企业的文本机器人进行服务时,有20%的客户接入便要求直接转人工;剩下80%的客户中,还有高达76%的客户会在完成一两轮对话后发出“转人工”的要求。
即综合来看,文本机器人的问题解决率仅有不到20%,超过80%的问题,仍然由人工座席完成服务。
为了解决这个问题,该企业与天润融合作,用基于大模型的智能体对传统的文本机器人进行改造。改造之后,智能客服问题解决率,客户满意度都有了明显改善。
今天我们以这家企业为例,看看与传统文本机器人相比,基于大模型的AI Agent(智能体)有哪些优势。
1、 传统文本机器人的局限
之所以绝大多数客户都会选择避开机器人客服而直接转人工,问题主要有两个方面。
首先文本机器人理解能力有限
作为电气类企业,这家企业的产品结构十分复杂,不同型号、不同规格的产品多达数百种。咨询过程中,许多客户并不会严格地说明产品名称和型号,而是会根据工作中常用的称呼、简称,或者缩写,因此文本机器人几乎很难准确地识别问题。
同时,当问题涉及一些机械故障时,客户也很难识别问题原因,只能通过描述问题现象,让客服帮忙判断。
而传统文本机器人只能依靠提前设定的FAQ进行回答,因此无法与客户进行自然交流,更无法辅助判断问题原因。
其次,传统文本机器人维护难度大,成本高。
传统文本机器人依靠提前设定的FAQ进行回答。在合格的配置中,一个标准问题通常需要匹配20个不同的相似问题,如果要提高回答准确率,通常需要将问题匹配到30个左右。
而电气企业数百款产品,几千个型号,相关问题配置可以达到上万个,维护如此庞大的FAQ和企业知识库对企业来说是一个巨大的成本支出。
这也导致该企业在FAQ配置上一直存在较多缺陷。
比如在知识库配置上,该公司50%的知识库只有一条语料,无法满足基础的应答。比如在语料占比上,该企业一个标准问题仅对应5个相似问。
同时,在该企业的知识库中,还存在许多低频问题和重复问题。这些也都增加了知识库的维护成本。
而这一系列的问题,都为文本机器人带来挑战,让它无法有效地服务客户。
02 用智能体替代传统机器人
了解问题后,天润融通基于AI大模型对原本的文本机器人进行了升级改造。
我们先来看几个改造后的案例:
客户提出一个问题,智能客服不仅能够针对问题进行解释,而且方便客户理解,它还能自己画出表格,简化信息表达。
同样提出一个问题,智能客服不仅立刻理解,还顺便发出了一张电脑的操作指引的截图,让客户一眼看懂如何进行操作。
除此之外,这个智能客服的情商还非常高,在遇到它看不懂的复杂问题的时候,它能够自动进行追问,引导客户逐步提出核心问题,并帮助解决。
甚至在遇到产品故障时,它还能帮助客户分析故障原因,并给出针对性的解决方案。
显而易见,从体验效果上,升级后的智能客服与原本刻板的文本机器人完全不同。这是因为改造之后,驱动智能客服的已经不再是传统的文本机器人,而是基于大模型的AI Agent 即智能体。
从示例可以看到,基于大模型的智能体能够与客户进行自然语言对话。
客户提出问题,智能体能够像人与人对话一般进行回答,遇到复杂的问题,它还能自动归纳画出表格进行示意,让整个交互更加人性化。
其次,智能体拥有意图识别能力。
即使客户说一些简称、缩写、或者约定俗称的名字,智能体也能精准地识别。这极大地提高了问题问答的准确率,增加了客户体验。
从该企业目前的使用来看,智能体回答问题的准确率在85%以上。
第三,智能体能够实现文档问答。
与传统文本机器人需要通过人工将企业文档中的知识点拆解出来形成FAQ不同,在使用智能体的过程中,企业只需要将相关文档上传知识库,智能体能够直接读取文档并理解其中的信息,然后通过这些信息与客户进行对话。
这也是为什么在前面的展示中,智能体在遇到一些专业问题时,能够第一时间给出资料图片和相关示意图的原因。
这些资料就是智能体从企业文档中直接提取出来的。通过这种方式,智能体也提高了与客户之间的对话效率,增加了信息传播层次,并且更加方便客户理解。
除此之外,随着文本机器人转变成智能体,原本的FAQ整理,知识库维护的工作也大大减少,这极大地降低了企业成本和人工座席的工作量。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。