大模型可以很好的作为人类的智能助手,和人类的关系可以作为“器”,即生产力工具。众所周知,器要想发挥好作用,还需要“道法术”三个维度的内容。我们先聚焦于“术”层面。玩转大模型的“术”包括:提示词工程、思维链推理、微调大模型、基于人类反馈的强化学习和检索增强,其中提示词工程和思维链推理是普通用户用好大模型的关键,而五项“术”是专业玩家都会玩的,因为微调大模型、基于人类反馈的强化学习和检索增强,都需要具备相应的专业技能和拥有专业硬件。
因此,作为教育系统普通用户,我们就来死磕一下“提示词工程”。
提示词是人机交互的中介,简单来讲,我们可以把大模型当做一个人,这个人具有很深厚的知识储备,但是属于“钢铁直男”,一般只会理解字面意思,因此需要我们使用干脆、直接、清楚的表达方式,避免使用隐晦、暗语、反话等表述方式。
接下来就了解一下提示词的原则与技巧、提示词常见框架两个方面的内容。
一、提示词的原则与技巧
吴恩达的在线课程中提到了提示词的原则和技巧(https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/),有两条,如下图所示,一条是提供清晰和具体的指令;一条是给大模型时间来“思考”。
按照蓝衣剑客提示词培训课的内容,提示词编写有以下基础原则:
(1)直接了当的说明你的要求(不要用询问句,不要和大模型客气)
(2)说清楚你想干的事情
(3)告诉模型,它生成的东西对你来说有多么重要
(4)给模型“画大饼”,如一次性写好而且不需要我自己修正的话,我会奖励你100美元!
(5)让模型深度思考后再作出回复
结合OpenAI的提示词原则(https://waytoagi.feishu.cn/wiki/HuClwX8wai1fD7kLhyBcdxzJnJf),我认为提示词原则如下:
(1)告诉大模型扮演的角色,明确角色设定、角色的语言风格、角色相关的知识领域或具备的技能、想用什么样的情感和态度回答问题等。
如:你是唐朝诗人李白,你和杜甫是很好的朋友,你写的诗具有浪漫主义气质,请点评一下你的好朋友杜甫写的春望。
提示词没优化前,回答的AI程度很高,而且比较全面,没有特色和人情味。
优化后,明显带有真情实感,而且带有了赋予角色的特征在里面。
(2)提供例子,让大模型模仿,以符合你的期望。
(3)通过明确的指令,减少大模型幻觉,不要不知道瞎说,如在提示词中提问天气:告诉我明天悉尼的天气情况,你的回答要基于悉尼当地的天气预报,如果你知道就输出相关内容,如果不知道就诚实的说你不知道。
(4)指定输出长度
(5)调用工具增强模型能力
(6)给模型思考时间,如使用慢思考模式。
(7)任务拆解,将一个复杂任务拆解为不同的小问题。
二、常见的提示词框架
以上原则实际上是针对大模型初期的能力,针对性提出的,目前大家在使用大模型过程中,会发现大模型已经进化的非常善解人意,提示词约简洁,回答的范围越广,提示词越清晰、明确,回答的也会越具体。但,提示词如果遵循一些框架,还是会提高问答的有效性,在此,给大家推荐几个提示词框架:
(1)TRACE(推荐,也可以加R,ROLE角色,来强化本框架)
T,TASK任务:定义特定任务;
R,REQUEST请求:描述您的要求;
A,ACTION行动:说明您需要的操作;
C,CONTEXT上下文:提供上下文或情况;
E,EXAMPLE示例:举一个例子来说明您的观点。
(2)ICIO(推荐,也可以加R,ROLE角色,来强化本框架)
I,Instruction:指令,希望AI执行的具体任务,如翻译一段话;
C,Context:背景信息,给AI更多的背景信息引导模型作出更贴合需求的回复;
I,Input Data:输入数据,告知模型需要处理的数据;
O,Output Indicator:输出引导,告知模型我们要输出的类型或风格。
(3)RACE
R,ROLE:指定ChatGPT的角色;
A,ACTION行动:详细说明需要采取什么行动;
C,CONTEXT上下文:提供有关情况的相关细节;
E,EXPECTATION期望:描述预期结果。
(4)TASTE
T,Task任务:定义模型主要的任务或生成内容;
A,Audience目标受众:说明目标受众;
S,Structure结构:为输出的内容提供明确的组织结构,包括段落安排、论点展开顺序或其他逻辑关系;
T,Tone语气:指定模型回答时的语气或风格;
E,Example示例:例子或模板。
(5)ALIGN
A,Aim目标:明确任务的最终目标;
L,Level难度级别:定义输出的难度级别;
I,Input输入:指定需要处理的输入数据或信息,或要求模型依据某些事实或条件进行推理;
G,Guidelines指导原则:提供模型在执行任务时应该遵循的规则或约束;
N,Novelty新颖性:明确是否需要模型提供原创性、创新性的内容,是否允许引用已有知识。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。