最近,DeepSeek这款国产开源AI大模型在国内外引发了广泛讨论。国内对其赞誉有加,而外网却有不少质疑之声。
关于DeepSeek的视频和文章层出不穷,但大多只是浮于表面,没有探讨其技术细节。今天,我们就来简单了解一下DeepSeek,看看它究竟是好是坏,以及它背后的技术原理和潜在价值。
一、技术剖析:优化与创新
DeepSeek基于Transformer模型,与GPT一样,其模型结构和本质并没有改变。它依然是通过多头注意力机制等技术实现的。在模型的代码中,我们没有看到本质上的创新,但它在优化方面下了很大功夫。
(一)精度优化
在AI模型中,通常使用浮点数进行运算。一般情况下,显卡或编程语言(如C语言)默认声明的浮点数是32位的,精度极高。然而,当模型的参数量达到数亿甚至数十亿时,对精度的需求其实并没有那么高。DeepSeek在这方面做了大胆的尝试,它采用了8位精度的浮点数进行运算。虽然精度降低了,但在处理大量参数时,性能却得到了显著提升。从32位到8位,运算强度可以降低16倍左右。这意味着,即使在低端硬件上,DeepSeek也能高效运行,降低对高端的英伟达芯片的依赖程度。当然,对于损失一定精度换取效率的做法也是仁者见仁智者见智了。
(二)并行计算优化
DeepSeek的代码中大量涉及并行计算的优化。它对Transformer模型的线性层进行了改造,使其能够更好地在多个GPU上并行运算。传统的解决方案需要昂贵的NVLink等技术来实现GPU之间的内存共享和算力协同,但DeepSeek通过改变模型结构,实现了在普通低端GPU集群上的高效并行计算。这种优化不仅降低了硬件成本,还提高了模型的可扩展性。更加的有利于中小科技公司在资金和硬件条件有限的情况下开展自己的业务。
(三)输出优化
在输出端,DeepSeek也做了优化。传统的Transformer模型(如GPT)每次只能输出一个Token,而DeepSeek可以一次输出多个Token。这在推理和训练阶段都能显著提升性能。例如,输出一句话(假设10个Token),GPT需要循环10次,而DeepSeek可能只需要5次。这种优化不仅提高了效率,还降低了计算资源的消耗。
二、训练数据与模型性能
DeepSeek的训练数据采用了“蒸馏”技术。它没有像GPT那样从海量的网络数据中直接提取信息,而是通过向GPT等成熟大模型提问,获取高质量的标注数据。这种方式使得DeepSeek的训练数据更加精炼,减少了噪音和偏见。同时,DeepSeek在训练过程中可以专注于特定领域的知识(如科技、数学等),避免了涉及模糊的政治和人文问题。这种数据蒸馏方法使得DeepSeek能够在短时间内训练出高性能的模型,且在特定应用场景下能够达到与GPT相当的水平。
三、开源的意义与应用前景
DeepSeek的开源为AI领域带来了新的机遇。首先,它允许本地部署,解决了隐私和数据安全问题。用户可以在自己的硬件上运行模型,无需依赖云端服务。其次,DeepSeek的低算力需求使得它可以在低端硬件上运行,降低了使用门槛。这对于个人开发者和小型企业来说是一个巨大的福音。此外,DeepSeek的开源还为AI应用的开发提供了更多的可能性。开发者可以基于DeepSeek开发各种AI工具,如AI写作、AI翻译等,推动AI技术的普及和应用。
四、未来展望:AI的三个发展阶段
(一)AI 1.0:聊天与写作
目前,AI主要应用于聊天和写作等简单任务。这是AI的初级阶段,虽然已经取得了一定的成果,但仍有许多改进空间。未来,AI在这一领域的应用将更加广泛和深入,如智能客服、内容创作等。
(二)AI 2.0:工具使用
AI的下一个发展阶段将是工具使用。AI将与传统的应用程序深度融合,通过API接口实现双向交互。用户可以通过自然语言与AI交互,让AI完成各种任务,如创建日程、管理文件等。这将大大提高工作效率,使AI真正成为人们的得力助手。
(三)AI 3.0:物理世界的应用
AI的最终目标是进入物理世界,帮助人们完成各种实际任务,如做饭、打扫卫生、甚至驾驶汽车等。虽然目前这一领域的技术还不够成熟,但随着技术的不断进步,未来AI将在物理世界中发挥越来越重要的作用。同时,AI在军事领域的应用也将带来巨大的变革,如自动武器系统、智能战场策略等。
五、总结
DeepSeek的出现为AI领域带来了新的活力。它在技术上的优化和创新,使其在低算力硬件上也能高效运行。同时,其开源的特性为开发者提供了更多的机会和可能性。虽然DeepSeek在某些方面仍有不足,但它的出现无疑为AI的未来发展指明了方向。未来,随着AI技术的不断进步,我们相信AI将在更多领域发挥重要作用,为人类带来更多的便利和福祉。
六、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。