大模型宕机的时候,没有一片雪花是无辜的…

今天,被一张网传图给笑岔气了。

这张图太能代表大模型用户最近几天的心情了。

我本将心向明月,奈何明月宕机了

不知不觉当中,各种大模型成了我们工作中不可分割的一部分,职场牛马也终于体会了一把当主子的感觉。

可是,你越离不开大模型牛马,它就越爱玩失踪。

不只是如今万千宠爱于一身的DeepSeek,过去一年里,前代“网红大模型”ChatGPT,可算是崩了又不崩。

有时是因为访客太多崩,有时是因为系统bug崩,有时是因为配置错误崩,甚至因为机房停电崩。

这么说吧,每次崩,都让深度依赖它的小伙伴们抓狂。

道理很简单,我对你那么上头,你却那么让我下头,这可还行?

DeepSeek也好,GPT也好,我们希望这些大模型要死扛住厚望,提供高可用的服务。

要想大模型不宕机、不作妖,我们首先就要搞清楚“供养”大模型的都是啥。

AI大模型其实是典型的云上原生业务,稳健的大模型离不开既有弹性又有韧性的云服务。

云服务需要为“大模型牛马”提供牛棚、饲料以及整个成长周期的呵护。

1、要想“牛棚牢固”,就需要「AI基础设施」高可用:

从可用区的架构搭建,到基础设施硬件的RAS设计,从GPU实例、容器服务,到存储服务、网络传输服务…,不能有任何一块短板。

2、要想“饲料充足”,就需要「AI数据处理」高可用:

数据采集、清洗、供给的链条不能断链。

否则,训练时吃不饱,大模型会发育不良,智商不够。推理时断了炊,大模型也会大脑短路,反应迟钝。

那优质“饲料”的供给如何保证呢?

这依赖于数据存储、数据处理服务的高可用设计与故障快速恢复。

数据库、数据湖、数仓、数据治理服务等等,凡是负责“饲料”采存、清洗、存储、供应的设施,都要稳如泰山。

3、要想“牛马茁壮成长”,就需要AI训推&应用开发高可用:

这个环节,需要围绕训练、模型推理部署、AI应用开发、AI应用服务的整个生命周期,保障训推平台、MaaS平台、开发平台、API网关的可靠性和安全性。

让大模型开发者和AI应用的使用者,享受持续的服务和卓越的体验。

这么说吧,从基础设施到数据供给再到训推和AI应用开发,就像三脚架的三个支点,缺一不可。

必须全栈高可用,三个都稳,则大模型稳。任何一个支点有短板,则大模型危。

那么,这样的全栈高可用方案,怎么才能获得呢?

我们以阿里云为例,来看看他们是怎么干的↓

最近,阿里云推出了全栈AI负载高可用架构,给业界展示了生成式AI时代的云到底应该如何架构。

接下来,我们来看在每个层面,阿里云具体都有哪些高可用的保障。

01、AI基础设施高可用

部署过算力集群的老司机都知道,甭管是哪家的GPU,故障率都很高,很多训练中断,都是因为GPU作妖。

而阿里云磐久服务器基于AI算法,可以对GPU的故障进行精准预测,从而提前预判故障,及时进行物理节点自动化切换。

同时,磐久服务器有CIPU2.0加持,这是阿里云自研的一种云基础设施处理器,除了具备性能加速能力外,还可以提供全方位安全能力增强,让整机稳定性提升20%。

单机稳定是集群稳定的基础,阿里云还通过集群健康检测、故障感知和自愈、HPN7.0集群网络的冗余设计等手段,进一步提升训练业务的稳定性和计算资源的使用效率。

最终,由磐久服务器、HPN7.0高性能网络组成的灵骏智算集群,在大规模训练作业中有效训练时长占比高于99%,披星戴月“肝出”大模型。

这份“披星戴月”的战斗力,还需要算、存、网的集体加持↓

在存储服务上,阿里云推出了Regional ESSD,这是一种多可用区级的ESSD,基于飞天盘古同城冗余架构,支持多重挂载,容忍可用区级别故障。

即便单个IDC故障,仍然可以保证数据不丢失、保障数据一致性。

除了Regional ESSD,阿里云存储服务还有同城冗余和数据保护能力↓

比如OSS对象存储也支持同城多机房容灾,满足RTPO=0的苛刻要求,Tablestore表存储同城冗余。

提供数据灾备和合规管理,并支持备份点病毒检测,快速识别干净数据完成恢复。

在网络服务上,阿里云HPN高性能网络已经进化到8.0,提供400G/800G低延迟无阻塞多路径网络连接。

还有一个“近水楼台”的独特功能,用户可以通过Privatelink私网通道高速访问通义大模型家族,既高效又安全。

当然,在基础设施层面,还有多Region和多AZ的云架构,阿里云作为一线大云,这属于弹性和韧性方面的标配,我们就不多说了。

2、「AI数据处理高可用」

在数据处理这一层,底座有阿里云对象存储OSS,作为PB级、EB级超大规模数据统一承载,并与多种计算引擎、AI框架进行深度集成。

提供多副本冗余、同城容灾、大文件端点续传、批量和多线程数据操作等融合手段,来保障数据服务的高可靠。

在稳固的数据底座之上,阿里云构建了大数据、搜索、AI一体化解决方案:OpenLake。

OpenLake基于开放的数据湖仓格式,支持大数据、搜索和AI多引擎对接,实现引擎平权协同计算。并且OpenLake支持多级容灾体系,能够让“饲料”供应链稳健运转。

同时,阿里云通过DMS+DTS(数据管理服务+数据传输服务),构建了针对AI场景的数据库多AZ、跨Region高可用与容灾方案。

无论传统的关系型数据库,还是针对AI训推的向量数据库,都可以通过DTS的实时双向同步、就近读写、负载均衡,实现跨Region的强一致性,保证AI数据服务高可用。

3、「AI训推&应用构建高可用」

在这一层级,阿里云有两大高可用平台:一个是用于模型训推的PAI,另一个是用于MaaS服务和应用开发的百炼。

训练环节,PAI提供弹性容错引擎AI Master,可以自动发现并修复出错的任务,并且可以各种底层监控,发现问题节点,就启动自愈。

故障任务分钟级恢复,大幅提升训练效率。

推理环节,PAI-EAS(模型在线服务平台)可以分钟级弹性自动扩缩,每分钟可以扩展10000Pod,再高的突发推理负载也不怕。

同时,PAI-EAS在承载各种实时推理、近实时推理任务时,可以感知每个推理请求的执行进度,进行智能任务调度,提升扩缩容效率,保障服务体验。

模型托管服务和开发环节,百炼MaaS平台核心模型服务API达到99.99% 的SLA,并对实时AI语音交互、实时AI搜索这种高性能场景,提供超低延迟API响应。

此外,阿里云所讲的「全栈」,不只是三大支点(基础设施、数据处理、训推&应用构建)高可用,还提供AI开发的全链路可观测。

通过实时的监控和分析,来进行健康性检查和开发体验持续优化。

现在,从牛棚搭建到饲料供给,从育种呵护到监管防疫,方方面面全部到位。

AI和大模型牛马的连续性、响应速度、稳定性和安全性都有了保障。

不止如此,在全栈AI高可用的基础上,阿里云与用户携手,共同努力打造AI原生的智能化、自动化、可持续的云上IT治理体系,推出「阿里云卓越架构」。

这套架构,是阿里云根据多年服务客户的经验,总结出来的方法论和架构设计原则,从安全、稳定、效率、成本、性能五个层面,来提升系统整体韧性和运营效率。

合理借鉴这些方法论和实践经验,无论传统云上生产业务,还是AI大模型“新贵”业务,都可以更安全、更稳定、更高效、更有性价比的用好云。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值