一、大语言模型(Large Language Model, LLM)
(一)技术定义
大语言模型是基于深度学习架构(如Transformer)、通过海量文本数据训练的程序系统。其本质是一个“数学函数”——输入文本(如问题),输出文本(如回答),核心能力是通过计算词语间的概率关系生成连贯内容。
-
参数规模
:模型“神经元”的规模,如GPT-3有1750亿个参数,PaLM 2超过3400亿。每个参数可理解为模型学习到的“知识片段”。
-
训练方式
:基于海量互联网文本(如书籍、网页、论文)的无监督学习,模型通过预测句子中缺失的词语(如Masked Language Model模式)掌握语言规律。
-
架构特点
:自注意力机制(Self-Attention)让模型能捕捉词汇间的长程依赖,例如理解“它”在长段落中指代的具体对象。
(二)研究定义
大语言模型的研究目标是为机器赋予“自然语言理解与生成的基本智力”,其突破在于:
-
零样本学习
:无需专门训练,就能回答未见过的问题(如直接让GPT-4写诗歌)。
-
上下文学习
:通过输入中的例子(如“任务描述+示例”),调整输出策略。
-
通用推理能力
:模糊的逻辑推断能力(如判断“如果明天下雨,是否要改计划?”)。
重要局限:模型的“知识”是统计规律的产物,无法确保事实准确性(即“幻觉问题”),也没有物理世界的真实认知。
二、智能体(AI Agent)
(一)技术定义
智能体是基于大语言模型构建的自动化系统,其技术框架包含四大模块:
1、 感知层
:通过提示词(Prompt)和大模型的自然语言处理能力理解用户需求。
2、 规划层
-
任务拆解
:将复杂任务分解为子步骤(如“调研特斯拉FSD”拆分为搜索、阅读、总结)。
-
动态纠错
:根据执行结果修正策略(如发现搜索结果质量低时更换检索工具)。
3、 记忆层
-
短期记忆
:当前任务的上下文信息(如已收集的网页摘要)。
-
长期记忆
:外部知识库(如向量数据库存储的历史行业报告)。
4、 执行层
:通过接口调用工具(如搜索引擎、代码解释器)完成任务。
(二)研究定义
研究领域将AI智能体定义为拥有主体性的程序实体,强调三大特性:
1、 自主性
:无需逐步指令,主动规划路径(如发现用户需求模糊时主动澄清问题)。
2、 具身性
-
工具使用
:调用API、执行代码、操作数据库(如让ChatGPT写代码后自动运行)。
-
多模态交互
:整合文本、语音、图像(如微软Copilot根据会议录屏生成纪要)。
3、 演进性:通过强化学习优化策略(如AlphaGo自我对弈提升棋力)。
典型突破案例:斯坦福虚拟小镇中的AI角色能自主制定日程、参与社交活动,甚至举办情人节派对,展现出接近人类的复杂行为模式。
三、提示词(Prompt)
技术本质:输入给大模型的自然语言指令,其设计直接影响输出质量。
-
基础原理 :通过词序、上下文和任务描述,激活模型参数中对应的“知识路径”。
-
设计范式
1、 思维链(CoT) :强制模型分步思考(如要求“先列出主要观点,再总结”)。
2、 模板化指令
-
初级提示:“写旅游攻略” → 生成笼统列表
-
进阶提示:“为亲子家庭设计3日大阪行程,需包含环球影城攻略、儿童友好餐厅及雨天备选方案” → 输出结构化方案
高阶应用:
-
思维树(ToT)
:生成多个推理路径并择优(如让模型设想三种解题思路,评估后选最优方案)。
-
ReAct框架
:交替执行推理(Reasoning)与工具调用(Action),例如:
用户提问:2023年诺贝尔文学奖得主是谁?
ReAct流程:
1. 推理:模型发现自己知识截止至2023年1月,需查证最新结果。
2. 行动:调用搜索引擎API查询“2023诺贝尔文学奖”。
3. 推理:验证结果权威性,整合答案。`
四、三者的协作关系
1、 底层驱动
:大语言模型是智能体的“大脑”,提供语言理解和推理的基本能力。
2、 行动枢纽
:智能体通过提示词指挥大模型完成特定任务(如“用Python分析数据”需提示模型生成并执行代码)。
3、 感知闭环
:工具调用的结果会加入新提示词,形成“观察-决策-行动-反馈”循环
[用户输入 → 提示词 → 大模型推理 → 工具调用 → 结果写入新提示词 → 继续推理]
五、未来发展:从工具到数字物种
目前最先进的智能体(如OpenAI的AutoGPT)已展现初级自我迭代能力:
1、 程序自修改
:生成代码优化自身逻辑(如发现效率低时重构算法)。
2、 跨平台操作
:控制浏览器、办公软件等完成复杂工作流。
3、 群体协作
:多个智能体分工配合(如一个写代码,另一个测试)。
能力维度 | 技术实现 | 现实应用场景 |
---|---|---|
认知增强 | 千亿参数知识库+实时检索 | 律师10分钟完成百份合同审查 |
动态规划 | ReAct框架+思维树算法 | 自动驾驶实时调整路径规避突发风险 |
跨域协作 | 多智能体通信协议 | 物流机器人集群优化仓库分拣 |
持续进化 | 强化学习+用户反馈闭环 | 推荐系统精准预测用户电影偏好 |
核心挑战:如何让智能体的规划能力突破短期任务限制,向人类级战略思维进化。
通过理解这三者的本质与关联,我们能更理性地看待当下AI技术的革新,既不神化其能力,也避免低估其可能引发的深层变革。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。