在这个信息爆炸的时代,你是否曾幻想过与机器流畅交谈,或是让AI助你笔下生花,创作出惊艳的文章?这一切,都离不开大语言模型的神奇魔力。今天,让我们一起揭开这层神秘的面纱,走进大语言模型的科普奇幻之旅!
一、什么是大语言模型
大语言模型可以理解为一个“超级语言学习机”。它通过分析互联网上数十亿甚至数万亿字的书籍、文章、对话等文本,像人类一样学习语言的规律和模式。比如,它能根据上下文预测下一句话,或者模仿不同风格写文章。这种模型的核心是一套复杂的数学程序(神经网络),参数数量越多,学习能力越强
二、规模有多惊人?
大语言模型的“大”体现在三个方面:
- 参数规模:模型的“脑容量”极大,例如GPT-3有1750亿个参数67。这相当于人脑神经元的百万倍规模,能记住海量语言细节。
- 训练数据量:训练数据动辄达到数百TB,相当于几千万本书的内容。
- 算力需求:训练一次可能需要数千台高性能计算机工作几个月,耗电量堪比一座小型城市。
三、大语言模型的应用场景
大语言模型已渗透多个行业,典型应用包括:
- 内容生成:自动撰写新闻、故事、代码及法律文书,提升创作效率。
- 对话系统:客服机器人、虚拟助手及心理健康支持,例如电商平台的自动化咨询。
- 跨语言处理:机器翻译、多语言客户服务,支持全球化业务扩展。
- 专业领域:
- 医疗:辅助诊断与文献分析;
- 金融:风险评估与市场报告生成;
- 法律:合同审查与法规遵从。
- 教育与科研:个性化学习辅导、论文摘要生成及知识图谱构建。
四、全球大模型风云榜
当今世界流行的大型语言模型通常由科技公司或研究机构开发,这些模型具备处理和生成自然语言文本的能力,广泛应用于机器翻译、文本摘要、问答系统、情感分析、聊天机器人等领域。以下是一些知名的大型语言模型:
国外主流大模型
名称 | 背景公司 | 描述 |
---|---|---|
GPT-4 | OpenAI | 需要科学上网,收费 |
Claude 3 | 亚马逊 | 需要科学上网 |
Gemini 1.5 Pro | 谷歌 | 需要科学上网 |
Llama 3 | Meta | 8B、70B版 |
Gemma | 谷歌 | 28、7B版 |
Claude 3 | Anthropic | Opus得分最高 |
Copilot | 微软 | 需要科学上网 |
Midjourney v5 | Midjourney | 需要科学上网+付费 |
Dall-e3 | OpenAI | 需要科学上网,免费 |
StableDiffusion | Stability Al | 本地安装,吃显卡 |
国内主流大模型
名称 | 背景公司 | 描述 |
---|---|---|
通义千问 v2.5 | 阿里云 | 功能多,文字能力强 |
Kimi | 月之暗面 | 适合2C、打工人 |
文心一言 3.5 | 百度 | 3.5难用,4.0版收费 |
豆包 | 字节 | 适合小白,入门 |
智谱清言 | 智谱AI | 适合B端、API部署 |
讯飞星火 3.0 | 讯飞科技 | 功能多 |
DeepSeek-V2 | 深度求索(幻方) | 开源,价格极其便宜 |
GLM-4 | 智谱AI | 千亿参数 |
Qwen1.5 | 阿里云 | 110B |
abab 6.5 | MiniMAX | 万亿参数 |
天工3.0 | 昆仑万维 | 4000亿参数 |
五、挑战与未来发展方向
挑战
- 数据与算力瓶颈:高质量数据获取困难,行业数据渗透不均(如金融与制造业差异显著),且训练需消耗巨额算力资源。
- 模型缺陷:
- 幻觉问题:生成内容可能存在事实错误;
- 推理能力局限:复杂任务(如长文本分析)表现不足。
- 伦理与安全:数据隐私泄露、算法偏见及恶意使用(如虚假信息生成)。
- 技术标准缺失:不同模型间兼容性差,缺乏统一的数据处理与评估标准。
未来方向
- 技术创新:
- 架构优化:探索Mamba等新架构降低计算复杂度;
- 多模态融合:整合文本、图像、语音数据,拓展应用场景。
- 数据与算力升级:
- 建设开放数据平台,推动数据共享与标准化;
- 发展智能算力,提升芯片自主化水平。
- 伦理与法规:
- 制定AI伦理准则,完善数据安全法规;
- 加强模型可解释性研究,减少算法偏见。
- 应用生态扩展:
- 开发插件系统(如百度文心一言的搜索与图表插件),增强场景适配性;
- 推动行业深度整合,例如腾讯“企鹅卷轴”评测集促进长文本技术发展。
六、总结
大语言模型凭借其强大的语言处理能力,正在重塑多个行业的智能化进程,但其发展仍需突破数据、算力、伦理等多重挑战。未来,技术创新与跨领域协作将成为推动其持续进步的核心动力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。