学AI应该像当初学office办公软件那样学。
最近,打算花点时间深度读一下谷歌这次发布的Prompt Engineering白皮书,目前看了一半了,对于干了几年AI的人来说都非常有启发!
你可以理解这是大模型的使用指南,比市面上任何的教程都要更加精准,因为这是谷歌作为大模型厂商自己出的教程。
并且谷歌一直都有一个公益研究团队,之前我分享过他们2025AI Agent的趋势分析,也非常准确。
我当时学AI就是跟着OpenAI最开始的官网指南学的,现在如果你想进阶一下AI提示词的能力,那么这个白皮书你就一定不能错过!
白皮书总共65页,文末我放了领取方式,可以直接找我发给你。
总结来讲,这就是一本学习AI最好的入门读物。
1、提示词工程是人人都可学的
“写提示词不是写作文,越具体越简单,AI才最懂你。”
令人欣慰的是,提示词工程并非高不可攀:"你不需要是数据科学家或机器学习工程师,任何人都可以编写提示词。"这一观点打破了普通人对AI技术的误解。
为什么大多数人用不好AI
大多数人在使用AI时犯的最常见错误是提示词过于模糊和缺乏具体指令。
看看这两个例子的差异:
低效提示词:
帮我写一篇关于气候变化的文章
高效提示词:
请写一篇800字的关于气候变化对农业影响的科普文章,目标读者是高中生。
包含以下部分:
1)温度升高对作物产量的影响;
2)降水模式变化带来的挑战;
3)农民可以采取的适应措施。
使用简单易懂的语言,避免专业术语,
并在适当位置加入类比来解释复杂概念。
这两个提示词的区别不言而喻。第一个提示词没有明确长度、风格、结构和受众,而第二个提示词则提供了具体的指导。
提示词的质量直接决定了AI输出的质量,这符合计算机科学中的"垃圾进,垃圾出"(GIGO)原则。
有效的提示词应遵循以下原则:
-
具体 > 抽象
:提供明确的参数和期望
-
示例 > 解释
:少样本学习(few-shot learning)比长篇解释更有效
-
步骤 > 结果
:引导AI展示思考过程,而不只是给出结论
2、高手的提示词技巧
“最好的提示词不是一锤定音,而是反复试错、不断迭代出来的。”
专家们一致认为:“提示词工程是一个迭代过程。制作并测试不同的提示词,分析并记录结果。根据模型的表现来优化你的提示词。”
以下是六种提示词技巧的实战应用
1.温度调节:创意与准确的平衡艺术
temperature参数控制AI输出的随机性:“temperature控制token选择中的随机性程度。较低的temperature会产生更确定性的、可预测的输出,而较高的temperature会产生更多样化、创造性的输出。”
- 实践建议:对于事实性任务(如问答),使用低temperature(0.0-0.2);
- 对于创意任务(如故事创作),使用高temperature(0.7-1.0)。
2.少样本学习:用例子代替千言万语
研究表明,示例远比解释更有效:“少样本提示为模型提供多个示例…这些示例帮助模型理解任务的模式和期望输出的格式。”
实际应用:
将以下句子翻译成法语:
英语:The weather is beautiful today.
法语:Le temps est beau aujourd'hui.
英语:I enjoy reading books.
法语:J'aime lire des livres.
英语:Whereis the nearest restaurant?
法语:
3.角色扮演:让AI成为你需要的专家
角色提示能激活AI的专业知识:“角色提示为模型分配一个特定的角色或身份…这可以帮助模型采用特定的语气、风格或专业知识。”
实例应用:
你是一位经验丰富的营销专家。请帮我分析以下产品的市场定位策略。
4.步退思考:解决复杂问题的反直觉方法
步退提示是一种强大的思考框架:“步退提示是一种通过先让AI考虑与手头特定任务相关的一般性问题来提高性能的技术…然后将该一般性问题的答案输入到后续提示中用于特定任务。”
实际运用:
第一步:在解决如何提高网站转化率之前,
让我们先思考:什么因素通常影响用户在网站上的购买决策?
第二步:基于这些影响因素,现在分析如何提高我们电子商务网站的转化率。
5.思维链条:让AI像人一样一步步推理
思维链提示显著提升了AI的推理能力:“思维链(Chain of Thought, CoT)提示是一种通过生成中间推理步骤来提高AI推理能力的技术…AI响应包括思维链推理,这意味着更多的输出标记,也意味着预测成本更高且耗时更长。”
实例展示:
问题:如果一条围巾的价格是15美元,打完75%折后是多少?
思考过程:
1. 原价是15美元
2. 75%折扣意味着我支付原价的25%
3. 15美元的25%是15 × 0.25 = 3.75美元
4. 所以打完75%折后的价格是3.75美元
6.自我一致性:多路径验证,避免AI"一本正经地胡说八道"
自我一致性是提高AI可靠性的关键:“自我一致性结合了采样和多数投票,生成多样化的推理路径并选择最一致的答案。”
应用方法:通过多次使用不同的推理路径解决同一个问题,然后选择出现最多的答案,这种方法显著提高了复杂推理任务的准确性。
3、试试让AI写提示词
“让AI自己帮你写提示词,比你苦思冥想高效百倍。”
最前沿的技术是自动提示工程(APE):“自动提示工程…你将提示一个模型生成更多提示词。评估它们,可能修改好的提示词。然后重复这个过程。”
提示词工程在各个商业领域都有广泛应用:
1.自动化内容创作
通过精心设计的提示词,AI可以生成高质量的营销文案、产品描述和技术文档。关键在于提供明确的品牌指南和内容示例。
2.数据分析与决策支持
ReAct和Chain of Thought等技术可以显著提高AI在复杂分析任务中的表现。
3.智能体开发
ReAct技术为智能体开发提供了框架:“ReAct提示通过将推理和行动结合到思考-行动循环中来工作…AI首先推理问题并生成行动计划。然后执行计划中的行动并观察结果。”
4、一些具体的实战案例
案例1:使用ReAct技术解决复杂查询
ReAct技术如何解决需要多步骤、多工具的复杂问题:
问题:谁是《指环王》的作者,他出生于哪一年?
思考:我需要找出《指环王》的作者,然后查找他的出生年份。
行动:搜索[《指环王》作者]
观察:《指环王》的作者是J.R.R.托尔金。
思考:现在我知道作者是J.R.R.托尔金,我需要找出他的出生年份。
行动:搜索[J.R.R.托尔金 出生年份]
观察:J.R.R.托尔金出生于1892年1月3日。
回答:《指环王》的作者是J.R.R.托尔金,他出生于1892年。
案例2:使用Chain of Thought提升数学问题解决能力
思维链条如何提升数学问题的解决能力:
问题:一家商店销售鞋子。每双鞋的成本是25美元。商店以40美元的价格出售每双鞋。
如果商店在一天内卖出了12双鞋,商店的利润是多少?
思考过程:
1. 每双鞋的成本是25美元
2. 每双鞋的售价是40美元
3. 每双鞋的利润 = 售价 - 成本 = 40 - 25 = 15美元
4. 商店卖出了12双鞋
5. 总利润 = 每双鞋的利润 × 鞋子数量 = 15 × 12 = 180美元
答案:商店的利润是180美元。
案例3:使用自动化提示词工程(APE)优化提示词
APE技术如何优化提示词:
初始提示词:总结这篇文章
APE生成的优化提示词:
请提供这篇文章的全面摘要,包括:
1. 主要论点和关键发现
2. 使用的方法和数据
3. 结论和建议
4. 限制和未来研究方向摘要应保持客观,长度控制在300字以内。
专家们一致认为,提示词工程正在从专业技术转变为主流技能。随着AI工具的普及,掌握提示词工程将成为职场必备能力。
研究表明了三个关键点:
- 提示词工程是一个迭代过程
- 不同任务需要不同的提示技术
- 提示词工程将继续发展和演变
正如我在投资中常说的:"复利是世界第八大奇迹。"在AI技能学习上也是如此,每天小小的进步,长期来看将产生巨大的差距。
那些今天开始认真学习提示词工程的人,将在未来的AI时代占据不可思议的优势。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。