面向智能制造的工业大模型:定义、特点、技术现状与挑战

智能制造是制造强国建设的主攻方向,是新时代新征程加快发展新质生产力、推进新型工业化的战略性、引领性任务。工业大模型因其出色的上下文理解、指令遵循、内容生成和场景泛化等能力,已成为推动智能制造的重要使能技术之一。

近日,中国电子技术标准化研究院联合各参编单位启动并编制了《面向智能制造的工业大模型标准化研究报告》,从工业大模型在智能制造落地应用过程中面临的瓶颈出发,对比了工业大模型与通用大模型的差异,提出了工业大模型定义、特点、技术现状与挑战,本文节选了部分核心观点。

一、工业大模型的定义和特点

面向智能制造的工业大模型是指在智能制造领域中,利用大规模数据集和复杂的机器学习算法构建的模型。在通用大模型的涌现能力、通用性和庞大参数规模的基础上,还需要进一步满足生产调度、设备管理、能源管理、安全环保、运行决策等众多制造业专业场景的应用需求,要求其具有较强的专业知识、可靠稳定的输出、严谨的逻辑、安全保密,支持私有化部署并具有较高的性价比,成为可用的“专才”提供全流程、多要素、多场景的智能化赋能。

图片

图 工业大模型与通用大模型的区别

与通用大模型相比,工业大模型的核心特点包括:

1、强专业性

既包括工业大模型中所覆盖知识的专业性,也包括了在专业场景中的可用性。

2、高准确性

经过精心训练和调优,工业大模型能在特定任务上达到非常高的准确度,满足工业领域高精度要求。

3、高可靠性

高可靠性既包括了输出结果的可靠性,也包括了故障情况的可靠性。

4、可解释性

对工业大模型生成结果可解释性提出较高要求,以便用户能够理解模型的推理和决策过程及其依据。

5、高稳定性

稳定性既包括模型自身的稳定性、输出结果的稳定性,也包括模型所提供服务性能的稳定性。

6、高实时性

设备、生产线及业务软件的运行具有严格的节拍和时间响应要求,要求工业大模型能够快速和及时地完成输出生成。

7、可集成性

工业大模型需能够与装备、软件、业务系统、企业已有数据库和知识库实现集成,以便支撑制造系统的持续拓展。

8、安全性

工业大模型在处理敏感数据时,必须确保数据的安全性和隐私保护。此外企业需要建立完善健全的安全政策和控制措施,防止数据泄露和非法访问。

9、可信赖性

可信赖性主要体现在其高准确性和可解释性。通过对大量行业特定数据的深度学习和分析,工业大模型能够提供可靠的预测和决策支持。

图片

图 工业大模型的核心特点

二、技术现状

1.模型训练与微调技术

工业大模型的广泛应用离不开强大的模型训练与微调技术。模型训练通常依赖于大规模数据集和高性能计算资源,而微调技术则使大模型能够针对特定工业场景实现高效优化。在实际应用中,微调技术通过利用预训练模型,借助少量数据进行针对性优化,以适配多样化工业任务。

图片

图 预训练与精调联合应用模式

2.轻量化部署技术

通过模型压缩、剪枝、量化等技术,开发者可以将原本复杂的大模型缩减为更轻量的版本,以便在边缘设备或资源受限的硬件上部署。这种技术使得大模型可以在工厂生产线、机器人设备等资源有限的环境中高效运行,实现快速推理和决策。

图片

图 模型轻量化的主要三种方式

3.私有域部署技术

通过将大模型部署于企业内部的私有云或本地数据中心,企业能够有效降低数据泄露至公共云平台的风险,同时实现更高水平的数据安全与隐私保护。私有域部署还使企业能够结合自身特定的安全需求和硬件条件,对模型进行深度优化,从而在确保安全合规的前提下充分发挥大模型的效能。

图片

图 UCloud私有化部署方案

三、挑战分析

1、 多模态数据融合难度高

在智能制造中,大模型常常需要结合多模态数据(如二维图像、三维扫描、传感器数据等)进行分析与决策。然而,不同模态数据的融合往往面临数据格式、分辨率、采样频率等异构性问题。为了让大模型有效地处理这些多样化的数据类型,需要开发统一的数据表示方法和高效的数据融合算法。

2、行业知识与模型结合困难

制造业往往具有复杂的行业知识,涉及设备操作、工艺流程、质量控制等多个方面。如何将这些隐性和显性知识融入大模型,使其具备理解和应用这些知识的能力,是当前企业面临的主要技术难题。

3、模型迁移与扩展困难

不同产品的特性和工艺流程差异较大,直接迁移大模型可能导致性能下降。为了实现有效的大模型迁移,往往需要解决数据分布差异、特征不一致、标注数据不足等问题。少样本学习和领域适应技术是应对这些问题的潜在解决方案。

4、模型输出的准确性差

模型输出的准确性受数据质量、模型选择、超参数设置等多个因素的影响。然而,工业环境中的数据往往存在噪声大且不完整的问题,导致模型的预测结果准确性低。为此,需要采用数据增强、模型选择优化、超参数调优等技术提高模型的输出准确性,从而确保大模型在实际应用中的可靠性。

四、如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值