数据结构_第五章_数和二叉树

第五章 数和二叉树

5.1树的逻辑结构
5.2树的存储结构
5.3二叉树的逻辑结构
5.4二叉树的存储结构及实现
5.5树、森林与二叉树的转换
5.6哈夫曼树

5.1树的逻辑结构

树的定义
树:n(n≥0)个结点的有限集合。
当n=0时,称为空树;
任意一棵非空树满足以下条件:
⑴ 有且仅有一个特定的称为根的结点;
⑵ 当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,… ,Tm,其中每个集合又是一棵树,并称为这个根结点的子树。
树的遍历操作
树的遍历:从根结点出发,按照某种次序访问树中所有结点,使得每个结点被访问一次且仅被访问一次。
前序遍历
树的前序遍历操作定义为:
若树为空,不进行遍历;否则
⑴ 访问根结点;
⑵ 按照从左到右的顺序前序遍历根结点的每一棵子树。
后序遍历
树的后序遍历操作定义为:
若树为空,则遍历结束;否则
⑴ 按照从左到右的顺序后序遍历根结点的每一棵子树;
⑵ 访问根结点。
层序遍历
树的层序遍历操作定义为:
从树的第一层(即根结点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。

5.2树的存储结构

双亲表示法
用一维数组来存储树的各个结点(一般按层序存储),
数组中的一个元素对应树中的一个结点,
每个结点记录两类信息:结点的数据信息以及该结点的双亲在数组中的下标。
data:存储树中结点的数据信息
parent:存储该结点的双亲在数组中的下标
双亲表示法中结点数据类型的定义
template
struct PNode{
T data; //数据域
int parent; //指针域,双亲在数组中的下标
} ;
孩子表示法-多重链表表示法(节点中的指针域表示孩子
方案一:指针域的个数等于树的度
data:数据域,存放该结点的数据信息;
child1~childd:指针域,指向该结点的孩子。
方案二: 指针域的个数等于该结点的度
其中:data:数据域,存放该结点的数据信息;
degree:度域,存放该结点的度;
child1~childd:指针域,指向该结点的孩子。
孩子结点
struct CTNode
{
int child;
CTNode *next;
};
表头结点
template
struct CBNode
{
T data;
CTNode *firstchild;
};
孩子兄弟表示法
结点结构
某结点的第一个孩子是惟一的,某结点的右兄弟是惟一的
设置两个分别指向该结点的第一个孩子和右兄弟的指针
data:数据域,存储该结点的数据信息;
firstchild:指针域,指向该结点第一个孩子;
rightsib:指针域,指向该结点的右兄弟结点。
template
struct TNode{
T data;
TNode *firstchild, *rightsib;
};

5.4 二叉树的逻辑结构

二叉树的定义
二叉树是n(n≥0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
特殊的二叉树
左斜树
右斜树
满二叉树
完全二叉树
二叉树的基本性质

  1. 二叉树的第i层上最多有2i-1个结点(i≥1)。
    2.一棵深度为k的二叉树中,最多有2k-1个结点,最少有k个结点
    3.在一棵二叉树中,如果叶子结点数为n0,度为2的结点数为n2,则有: n0=n2+1。
    完全二叉树的基本性质
    1.具有n个结点的完全二叉树的深度为 log2n +1。
    2.对一棵具有n个结点的完全二叉树中从1开始按层序编号,则对于任意的序号为i(1≤i≤n)的结点(简称为结点i)
    二叉树的遍历操作
    二叉树的遍历是指从根结点出发,按照某种次序访问二叉树中的所有结点,使得每个结点被访问一次且仅被访问一次。
    如果限定先左后右,则二叉树遍历方式有三种:
    前序:DLR
    中序:LDR
    后序:LRD
    层序遍历:按二叉树的层序编号的次序访问各结点。
5.4二叉树的存储结构及实现

顺序存储结构
二叉树的顺序存储结构就是用一维数组存储二叉树中的结点,并且结点的存储位置(下标)应能体现结点之间的逻辑关系——父子关系
二叉链表
基本思想:令二叉树的每个结点对应一个链表结点,链表结点除了存放与二叉树结点有关的数据信息外,还要设置指示左右孩子的指针。
前序遍历——递归算法
template
void BiTree::PreOrder(BiNode *root)
{
if (root NULL) return;
else {
cout<data;
PreOrder( );
PreOrder( );
}
}
前序遍历——非递归算法
template
void BiTree::PreOrder(BiNode *root) {
SeqStack<BiNode *> s;
while (root!=NULL | | !s.empty()) {
while (root!= NULL) {
cout<data;
s.push=root;
root=root->lchild;
}
if (!s.empty()) {
root=s.pop();
root=root->rchild;
}
}
}
二叉树的建立
1.按前序扩展遍历序列输入输入节点的值
2.如果输入节点之为“#”,则建立一棵空的子树
3.否则,根结点申请空间,将输入值写入数据域中,
4.以相同方法的创建根节点的左子树
5.以相同的方法创建根节点的右子树
中序遍历——递归算法
template
void BiTree::InOrder (BiNode *root)
{
if (root
NULL) return;
else {
InOrder(root->lchild);
cout<data;
InOrder(root->rchild);
}
}
非递归中序遍历二叉树
template
void BiTree::InOrderwithoutD (BiNode *root)
{
stack< BiNode * > aStack;
while(!aStack.empty()||root) {
while(root){
aStack.push(root);
root=root->lchild;
}
if(!aStack.empty()){
root=aStack.top();
aStack.pop();
cout<data;
root=root->rchild;
}
}
}
后序遍历——递归算法
template
void BiTree::PostOrder(BiNode *root)
{
if (rootNULL) return;
else {
PostOrder(root->lchild);
PostOrder(root->rchild);
cout<data;
}
}
非递归的后续遍历算法
void tree::T_print(bnode bt){
stack<bnode
> s;
bnode *cur, *pre=NULL;
if (root
NULL) return;
s.push(bt);
while (!s.empty()) {
cur=s.top();
if ((cur->LchildNULL&&cur->RchildNULL) ||(pre!=NULL&&(precur->Lchild||precur->Rchild)))
{
cout<data; s.pop(); pre=cur;
}
else
{
if (cur->Rchild!=NULL) s.push(cur->Rchild);
if (cur->Lchild!=NULL) s.push(cur->Lchild);
}
}
}

5.5 树、森林与二叉树的转换

树和二叉树之间的对应关系
1.兄弟加线
2.保留双亲与第一孩子连线,删去与其他孩子的连线.
3.顺时针转动,使之层次分明.
森林转换为二叉树
⑴ 将森林中的每棵树转换成二叉树;
⑵ 从第二棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树根结点的右孩子,当所有二叉树连起来后,此时所得到的二叉树就是由森林转换得到的二叉树。
二叉树转换为树或森林
⑴ 加线——若某结点x是其双亲y的左孩子,则把结点x的右孩子、右孩子的右孩子、……,都与结点y用线连起来;
⑵ 去线——删去原二叉树中所有的双亲结点与右孩子结点的连线;
⑶ 层次调整——整理由⑴、⑵两步所得到的树或森林,使之层次分明。
线索二叉树
二叉树的遍历方式有4种,故有4种意义下的前驱和后继,相应的有4种线索二叉树:
⑴ 前序线索二叉树
⑵ 中序线索二叉树
⑶ 后序线索二叉树
⑷ 层序线索二叉树
中序线索链表的建立——构造函数
分析:建立线索链表,实质上就是将二叉链表中的空指针改为指向前驱或后继的线索,而前驱或后继的信息只有在遍历该二叉树时才能得到。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值