本文重点
1.数据类型介绍
2.整型在内存中的存储
3.大小端字节序介绍及判断
4.浮点数在内存中的存储
数据类型的介绍
我们在前面的章节已经学过C语言的内置类型了,以及他们占用的空间
1.char 字符类型
2.short 短整型
3.int 整型
4.long 长整型
5.long long 更长的整型
6.float 单精度浮点数
7.double 双精度浮点数
类型的意义
1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
2. 如何看待内存空间的视角。
第一点我们好理解,对于第二点,通俗来讲就是你开辟了一块int类型的空间,不管什么数存进去都会被当作int类型。
类型的基本归类
1.整型家族
字符类型存储和表示的时候本质上使用的是ascll值,ascll值是整数,也归类到整型家族里
值得注意的是signed是有符号类型,unsigned无符号类型,拿我们的int举例,我们平常写的int a实际是是signed int a ,当我们写出int a的时候编译器默认为有符号类型。而unsigned int a是无符号类型,存的都是>=0的数。
%d,是打印有符号类型,即signed
%u,是打印无符号类型,即unsigned
int main()
{
int a = 1;
signed int b = 1;
printf("%d %d", a, b);
return 0;
}
同理我们的short a,其实本质上是signed short int a。值得注意的是,我们的char到底是无符号类型还是有符号类型,是看编译器决定的。
2.浮点数家族
float
double
3.构造类型
> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union
我们的数组也是构造类型,比如说int arr[10]。当int和10改变,即类型与元素大小改变,就是改变了我们的数组类型。
4.指针类型
int* pi;
char* pc;
float* pf;
void* pv;
5.空类型
void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
整型在内存中的存储
我们知道,一个变量的创建需要开辟空间,空间大小是根据类型大小决定的。
比如我们的
int a = 20;
unsigned int b = -1;
大家记住这2变量,学完下面整型如何在内存中存储就知道他们是如何运作了的。
原码,反码,补码
计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码
将原码的符号位不变,其他位依次按位取反就可以得到反码
补码
反码+1就得到补码。
对于整形来说:数据存放内存中其实存放的是补码
这是因为
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路
int main()
{
int a = -10;
//10000000000000000000000000001010
//11111111111111111111111111110101
//11111111111111111111111111110110
//FFFFFFF6
return 0;
}
当我们用调试的手段去查看a的内存时候
我们会发现在内存中存的是二进制的补码,为了方便展示,展现出来的是16进制,并且是倒着存放的。这是为什么呢?这就要引出大小端概念了。
大小端字节序介绍及判断
什么是大小端
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
为什么会有大小端
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元,都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。
小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则
为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
当我们想要存储int a = 0x11223344的时候,注意这是一个16进制,方便我们观察。
当我们的高位字节的数据存储在内存中的低地址,把低位字节数据存到内存中的高地址的时候就是我们的大端字节序存储。
当我们的高位字节的数据存储在内存中的高地址,把低位字节数据存到内存中的低地址的时候就是我们的小端字节序存储。
这个时候可能问了,什么是高低位字节序?我们拿10进制的123举例,1就是它的高位(百位)3就是它的低位(个位)
对于字节序,是以每一个字节为单位,16进制中每2个数为一个单位。Int a=0x1122你要记住0x是16进制标记,每2个数算一个字节11 22才2字节所以后面要补上0000完整 0X11220000
ok知道我们的大小端存储后,怎么知道我们的电脑是大端还是小端呢,这是很重要的,因为大厂考过。
百度2015年系统工程师笔试题:
请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)
我们来分析一下,当我们取int a=1的时候,即0x00000001,我们只需要知道它首地址是1还是0即可判断,即我们取到的最小的首地址如果是0的话就是大端字节序存储,当我们取到1的时候就是小端字节序存储。
值得注意的是,我们当我们取a的地址的时候(有4个字节),我们取得的是最小的一个地址,但是当我们解引用的时候是向后访问4个字节,直接得出a的值了,为了强行访问1个字节,我们需要强行转换char(访问一个字节)
int main()
{
int a = 1;
//00000000000000000000000000000001
char* p = (char*)&a;
if (*p == 1)
{
printf("min");
}
else
{
printf("max");
}
return 0;
}
无符号数的存储
#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}
大家运行前可以先试着思考一下,abc分别是多少。
我们不难发现a=b=-1。这更加佐证了我们的char与signed char是等价的
当我们看向c的时候,你要知道一个无符号类型本来就是>=0的,如果存了一个负数进去的话,就需要我们用二进制计算了。
c32bit位的补码
10000000000000000000000000000001 原码
11111111111111111111111111111110 反码
11111111111111111111111111111111 补码
还记得我们前面的操作符章节么,我们的char在运算的时候会发生截断,为8bit位
11111111
当我们以%d方式打印的话,是要按符合位补齐的,即
11111111111111111111111111111111
当然了这是我们的最后的补码形式,存储在计算机内部的,倘若要展示在我们面前就要为原码形式即取反+1
10000000000000000000000000000000
10000000000000000000000000000001
这就是我们a b在存储的过程。
那么c又该如何呢
前面的同理,先截断成8个全1后,当我们的补码遇到unsigned这块内存空间的时候,不管什么数就当作是unsigned类型的(映照前面的类型的意义哦),所以编译器默认认为你这个数已经是正的了,正数最高位按0补齐,即打印出我们的255。
00000000000000000000000011111111
我们接下来再看signed类型,用无符号类型打印就是以下结果
int main()
{
char a = -1;
//10000000000000000000000000000001
//11111111111111111111111111111110
//11111111111111111111111111111111
//111111111
//11111111111111111111111111111111
printf("%u", a);
return 0;
}
ok上面是unsigned char类型的,那么unsigned int 类型呢
int main()
{
unsigned int num = -10;
printf("%u", num);
return 0;
}
其实万变不离宗,当我们的-10存进去的时候,首当其冲的应该是我们的补码
11111111111111111111111111110110 补码
打印无符号的数,机器默认你这就是正数,正数原码等于补码,所以直接将上图直接打印。
值得注意的是,当你是unsigned类型的,但是用%d去打印,可能打不出你想要的结果哦,大家可以试一试。
类型大小范围
我们看我们的char类型,如果从头开始以原码翻译的话,char类型的范围
是-128到127,即-2^7 到 2^7-1
同理无符号char的范围是0到2^8 -1
那么大家可以思考以下其他类型的范围。
整型练习题
接下来是几道练习题,希望大家看的时候先思考
1:
unsigned int i;
for(i = 9; i >= 0; i--)
{
printf("%u\n",i);
}
2:`在这里插入代码片`
int main()
{
char a[1000];
int i;
for(i=0; i<1000; i++)
{
a[i] = -1-i;
}
printf("%d",strlen(a));
return 0;
}
3.
#include <stdio.h>
unsigned char i = 0;
int main()
{
for(i = 0;i<=255;i++)
{
printf("hello world\n");
}
return 0;
}
1.
当我们仔细看题的时候,不难发现,这肯定是一个死循环,因为unsigned是恒>=0的,但当我们细究打印的数的时候,只需要从-1的无符号打印数开始即可。
2.
这题我们知道,当char存一个整数的时候,本质是存入的是ascll值,本题问输出strlen是多少,我们要知道strlen是统计\0的之前的数,而数组里面存的是ascll值,故只需要找到我们的ascll值为0的数即可。它是-128到127的循环,一套下来遇到0共有255个数。
3.
我们知道unsigned char 范围是0-255就可以知道这是死循环了
浮点数在内存中的存储
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
大家在看之前可以运行思考一下这个代码,会发现以整型方式放进去,以浮点数方式拿出来,和我们的预想不一样,这说明我们的浮点数和整型存储不是一样的的。
浮点数存储规则
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
也就是说我们只需要知道S M E就可以换算每一个浮点数了
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
如图这就是我们2进制的权重
IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。
比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,
将第一位的1舍去以后,等于可以保存24位有效数字。这样精度越高。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0到255;如果E为11位,它的取值范围为0到2047。但是,我们知道,科学计数法中的E是可以出现负数的。
所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。
比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
指数E从内存中取出还可以再分成三种情况
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为 01111110,而尾数1.0去掉整数部分为0,得到M,补齐0到23位00000000000000000000000,则其二进 制表示形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
当e为全0,其实相当于你的1.xxxx * 2^-127这个数无限接近0,这个时候你的e=1-127=-126
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)
ok,我们讲完了浮点数的存储规则,我们再来看下原先的题目
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
我们逐步分析,当n以int类型,存进去,以%d拿出来,打印9是没毛病的
我们来看以浮点数形式拿出来,即以浮点数的方式看待打印
int n = 9;
00000000000000000000000000001001 原码
按照我们的存储规则,第一位是符号位S 后面8个是E 再后面是M
0 00000000 00000000000000000001001
S=0
E=1-127=-126
M=0.00000000000000000001001
得到的值:
(-1)^0 * 0.00000000000000000001001 * 2^-126
保留6位小数,打印0.000000
反之,我们以浮点数方式存进去,以浮点数方式打印是9.000000是没有问题的。但以整型拿出来就是
1.001*2^2
S=0
E=2+127=129 二进制10000010
M=001 补齐001000000000000000000
存放进去:
0 10000010 001000000000000000000
010000010001000000000000000000
转10进制:
1,091,567,616
ok,我们来验证我们的答案
我们知道了float的存储,double也随之解决了。其实电脑存储都是二进制,只是存拿方式不一样。
到这里就结束了,如果对你有所帮助的话,麻烦点个关注。