一、介绍
-
论文链接[2401.06426] UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer (arxiv.org)
-
UPDP 是 AMD AEAI 发表的一篇做模型压缩的论文,该方法通过模块替换、插入,渐进性训练和重参数技术,能对 CNN 和 Vision Transformer 模型都进行压缩,并取得 SOTA 的压缩效果。
-
模型优化技术通常有模型剪枝,模型量化和 NAS 等技术,其中模型剪枝是一种非常重要的模型优化技术。模型剪枝通常可以分为 channel-wise 和 layer-wise 剪枝方法。channle-wise 剪枝方法通常分析出 Conv/MLP 层中不重要的 weights,通过 mask 置零这些不重要的权重和 retrain 恢复精度,最终得到剪枝的 model,layer-wise 方法则是比较粗粒度的直接剪掉不重要的 layer 或 block,最终通过 retrain 恢复精度然后得到剪枝的 model。
-
目前剪枝算法存在一些问题:channel-wise 剪枝算法对于有 depth-wise Conv 的模型如 MobileNet 系列,ConvNext 系列很难取得很好的效果。layer-wise 剪枝算法如 DepthShrinker 和 LayerFold 只在 MobileNet 和 ResNet 模型上验证过,同时这些方法是没法压缩含非BN 的 Norm Layer model