AMD UPDP:模型压缩新思路,扩展模型压缩边界

UPDP是AMD提出的一种统一的模型压缩方法,通过模块替换、渐进训练和重参数技术,针对CNN和VisionTransformer模型进行高效压缩,尤其在处理深度卷积网络和Transformer中的复杂结构方面表现出色,实现了SOTA压缩效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、介绍

  • 论文链接[2401.06426] UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer (arxiv.org)

  • UPDP 是 AMD AEAI 发表的一篇做模型压缩的论文,该方法通过模块替换、插入,渐进性训练和重参数技术,能对 CNN 和 Vision Transformer 模型都进行压缩,并取得 SOTA 的压缩效果。

  • 模型优化技术通常有模型剪枝,模型量化和 NAS 等技术,其中模型剪枝是一种非常重要的模型优化技术。模型剪枝通常可以分为 channel-wise 和 layer-wise 剪枝方法。channle-wise 剪枝方法通常分析出 Conv/MLP 层中不重要的 weights,通过 mask 置零这些不重要的权重和 retrain 恢复精度,最终得到剪枝的 model,layer-wise 方法则是比较粗粒度的直接剪掉不重要的 layer 或 block,最终通过 retrain 恢复精度然后得到剪枝的 model。

  • 目前剪枝算法存在一些问题:channel-wise 剪枝算法对于有 depth-wise Conv 的模型如 MobileNet 系列,ConvNext 系列很难取得很好的效果。layer-wise 剪枝算法如 DepthShrinker 和 LayerFold 只在 MobileNet 和 ResNet 模型上验证过,同时这些方法是没法压缩含非BN 的 Norm Layer model

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值