目标检测
文章平均质量分 92
基于深度学习的目标检测
识久
这个作者很懒,什么都没留下…
展开
-
手撕yolo3系列——详解train训练代码(详细注释)
上一节:详解yolo3整体网络代码本节代码所在文件pytorch_yolo3/train.py主程序pytorch_yolo3/nets/yolo_training.py子程序文章目录回顾编码编码成什么样怎么编loss的产生YOLOLoss类内容回顾这节不再一行行的按顺序读代码了(大型的程序一般都是一层一层地往里剥),讲解代码时我会尽量配相应的图来加以说明整套流程的思路,对!主要是思路。先把程序放一边,回顾历史,然后想想当下该干嘛。前面两节主要在搭建网络(模型),搭建好了只要输入一张图片就可以得原创 2021-01-16 01:50:24 · 4294 阅读 · 0 评论 -
手撕yolo3系列——详解yolo3整体网络代码(详细注释)
上一节:详解主干网络darknet53代码上一节构建完了主干网络darknet53(backbone),这一节构建完整的yolo3网络。还记得吗?arknet# 输出三路分支 out3 = self.layer3(x) out4 = self.layer4(out3) out5 = self.layer5(out4) return out3, out4, out5...原创 2021-01-14 14:09:11 · 3785 阅读 · 0 评论 -
手撕yolo3系列——详解主干网络darknet53代码(详细注释)
本文代码基于yolov3的pytorch版本。文章目录darknet53网络结构残差块结构darknet53网络结构文字版:卷积+(下采样卷积+1残差块)+(下采样卷积+2残差块)+(下采样卷积+8残差块)+(下采样卷积+8残差块)+(下采样卷积+4*残差块)鸣谢:图片来源是不是很有规律?不难看出,darknet53就是重复堆叠下采样卷积+n*残差块(n为残差块的个数)这个结构而组成的。而更基本的结构就是残差块了,因此我们先构建出残差块,然后重复堆叠上述结构darknet53就完成了。残差块结原创 2021-01-14 02:11:24 · 12729 阅读 · 8 评论 -
目标检测——理解Anchor box的作用
最近重新看了遍经典的目标检测网络,对Anchor box 的作用有了更深入的了解。第一次写博客,有不正确的地方还望指出,共同进步。为了控制篇幅本文主要讲Anchor box,不针对网络细节展开,默认大家已经对经典网络有所了解,尤其是faster RCNN(下文会以faster RCNN为例讲解)带来不便,深表歉意。Anchor box的发展Anchor box最先由faster RCNN网络提出,后分别被SSD和YOLO2、YOLO3等经典网络借用,也出现了不同的称呼“prior box”、“defa原创 2020-12-18 09:58:43 · 5111 阅读 · 7 评论