我不是李大侠

随遇而安

centos7.5安装Jenkins,自动化部署Spring Boot

安装jenkins 1、官网下载Jenkins的war包,地址 https://jenkins.io/download/ 。 2、下载tomcat,并将jenkins.war移动到tomcat的webapps目录下。 3、启动tomcat。 4、访问http://ip:8080/jenkins,从...

2019-01-17 14:21:44

阅读数 164

评论数 0

centos7.5安装mysql5.7

卸载mariadb centos7.5 不支持mysql,内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb。 rpm -qa | grep mariadb rpm -e --nodeps mariadb-libs 下载源 wget htt...

2019-01-15 15:45:48

阅读数 77

评论数 0

centos7.5安装jdk、maven

安装jdk 1、首先到oracle官网下载jdk,https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 下载好上传到服务器上。 2、将下载的压缩包移到安装软件的常用文件夹中并解压。 ...

2019-01-10 09:44:23

阅读数 92

评论数 5

centos7.5安装git客户端

第一步:删除已有的git yum remove git 第二步:安装编译git时需要的包 yum install -y curl-devel expat-devel gettext-devel openssl-devel zlib-devel yum install -y gcc perl-Ex...

2019-01-08 10:45:49

阅读数 398

评论数 0

斐波那契数列

  斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方...

2018-05-20 14:55:12

阅读数 360

评论数 0

java实现寻找有向图的的闭环

最近在公司与遇到一个需求,将所有服务关系的依赖中找出闭环依赖,大概意思就是把有向图的闭环路径找出来,我用深度优先搜索(DFS)进行实现,现将代码贡献出来供大家参考: public class DsfCycle { /** * 限制node最大数 */ pri...

2018-05-17 11:46:00

阅读数 1289

评论数 0

NIO之Channel详解

NIO介绍   在讲解Channel之前,首先了解一下NIO, Java NIO全称java non-blocking IO,是从Java 1.4版本开始引入的一个新的IO API(New IO),可以替代标准的Java IO API,NIO与原来的IO有同样的作用和目的,但是使用的方式完全不同...

2018-02-24 13:57:59

阅读数 730

评论数 0

java堆、栈、常量池

java堆、栈 突然在网上看到一篇关于java堆栈共享问题帖子,所以回忆一下java堆栈。首先看看那个帖子 首先做一下解答,堆是所有线程共享的内存区域,栈是每个线程独享的,所以那篇博文肯定是错误的。 其次呢博文的这句话也是错误的 编译器先处理int a = 3;首先它会在栈中创建...

2018-01-30 15:53:32

阅读数 573

评论数 0

创建Thread对象时this.getName()和Thread.currentThread().getName()的差异

非构造参数创建Thread对象 首先看下面一段代码: class NewThread extends Thread{ public NewThread() { // TODO Auto-generated constructor stub Syst...

2018-01-15 20:03:06

阅读数 608

评论数 0

Java8新特性Optional、接口中的默认方法与静态方法

Optional Optional 类(java.util.Optional) 是一个容器类,代表一个值存在或不存在,原来用 null 表示一个值不存在,现在 Optional 可以更好的表达这个概念。并且可以避免空指针异常。 常用方法: Optional.of(T t...

2017-12-04 14:28:34

阅读数 446

评论数 0

Java8新特性Stream流

什么是Stream流? Stream流是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。 Stream的优点:声明性,可复合,可并行。这三个特性使得stream操作更简洁,更灵活,更高效。 Stream的操作有两个特点:可以多个操作链接起来运行,内部迭代。 Stream可分为并行...

2017-10-23 22:02:15

阅读数 691

评论数 0

Java8新特性方法引用、构造器引用、数组引用

引用方法引用方法引用是使用“::”将方法名和对象或类分隔,若lambda体中的内容有方法已经实现,我们可以使用“方法引用”,主要分为三种情况。对象::实例方法名注意:lambda体中调用方法的参数列表与返回值类型,要与函数式接口中抽象方法的参数列表和返回类型保持一致。public void tes...

2017-09-14 17:20:56

阅读数 273

评论数 0

spring整合rabbitmq

关于spring整合rabbitmq看了网上很多资料感觉描述的不够详细,正好最近自己使用到了这项技术,总结一下的详细过程,分享给大家。 准备工作 1、首先有一个springMVC的demo,这里就不再介绍,自己提前准备。注意的事情为spring版本不能过低,否则会报错,我就陷入这个坑中了。sp...

2017-08-11 17:45:17

阅读数 2221

评论数 5

解决报错:org/springframework/util/backoff/BackOff

因为在项目要使用队列,昨天整合spring和rabbitmq,当在配置消费者时,就是下面一段代码。<rabbit:listener-container connection-factory="connectionFactory" acknowledge=&...

2017-08-09 10:58:31

阅读数 790

评论数 2

Java8新特性Lambda表达式、函数式接口

什么是Lambda表达式,java8为什么使用Lambda表达式? “Lambda 表达式”(lambda expression)是一个匿名函数,Lambda表达式基于数学中的λ演算得名,直接对应于其中的lambda抽象(lambda abstraction),是一个匿名函数,即没有函数名的函数...

2017-08-02 11:17:59

阅读数 2262

评论数 2

centos7、unbutu14安装rabbitmq

最近公司用到了rabbitmq,RabbitMQ是一个开源的AMQP实现,服务器端用Erlang语言编写,支持多种客户端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX。用于在分布式系统中存储转发消息,在易用性、扩...

2017-07-17 17:45:36

阅读数 858

评论数 0

Ubuntu安装OpenGTS-GPS追踪系统

OpenGTS(Open sourced GPS Tracking System)是一套免费开源的的GPS追踪系统软件,基于Apache + Tomcat + MySQL环境。它提供一个基础框架用于创建属于你的基于Web的GPS跟踪系统,支持Google Maps等地图提供商,并能够通过插件增加对...

2017-07-07 16:26:17

阅读数 2122

评论数 0

xShell 5外观(背景、文字等)设置方案

自己喜欢的一种xShell外观设置

2017-05-02 12:00:34

阅读数 2890

评论数 0

Linux文件类型、属性

文件类型 Linux中万物皆文件,即可以将Linux中任何东西都是文件,配置文件几乎都是纯文本文件(ASCII,内容可以直接读取);可执行文件都是二进制(binary)文件,如命令文件等;还有一种是具有特定格式的文件,数据格式文件(data)。 通过file [文件名] 可查看这个文件的类型信息,...

2017-04-26 15:35:05

阅读数 371

评论数 0

Linux的目录结构

Linux目录特点 1. Linux逻辑上所有的目录只有一个顶点/(根),即所有目录的起点。 2. Linux所有目录结构是一个有层次的倒挂的一棵树。 3. 目录结构和分区设备是没关系的,也就是不同的目录可以跨越不同的磁盘设备或分区。、 4. 所有的目录都是按照一定的类别有规律的组织和命名的。 ...

2017-04-25 11:13:47

阅读数 648

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭