css位置属性简介

css位置属性

css位置属性的语法是:position:xxx
定位可以分为1.position:static(静态位置属性)2.position:relative(相对定位)3.position:abosult(绝对定位)4.position:fixed(固定定位)。以上就是position属性的四个值,下面我们来具体的介绍一下这四个值的特点:
一·position:static(静态位置属性)
元素框正常生成,块元素会生成一个矩形的框,作为文档流的一部分,行内元素则会闯将一个或多个行框,置于他的父元素中;(不会脱离文档流);

二·posititon:relative(相对定位)
【相对定位】是一个比较好理解的概念,
它是相对于自身的起始位置进行定位,然后可以设置垂直或者是水平位置,让元素【相对于】 它的起点进行移动;且自身脱离文档流,定位后原来的位置不会被其他的元素所占据。比较适用于元素的微调。(因为元素使用相对定位进行移动,元素任然会占据原来的空间,所以,移动元素会导致覆盖其他的元素)

三·position:abosult(绝对定位)
【绝对定位】与相对定位不同,绝对定位是相对于【祖籍元素】中含有【position】属性,并且 值不为【static】的元素,进行的定位;
如果所有的祖籍元素都没有该属性的话,那么就相对于【body】进行绝对定位;
它与【相对定位】相同的是它同样是定位后也会脱离文档流,但是元素本身位置会被其他元素所占据。(从文档流中删除,它能看到父元素,但是父元素却看不到它),元素大小为默认的百分之百为内容大小,默认是无外边距的;

四·position:fixed(固定定位)
【固定定位】是相对于【视图窗口】进行的定位,它是浮动在页面中的,元素位置不会随着窗口滚动条的滚动而发生变化,除非你在屏幕中移动浏览器窗口的屏幕位置或者改变浏览器窗口的显示大小。而且使用固定定位的元素,元素本身不会脱离文档流,但是它本身的位置会被其他元素所占据;元素本身的宽度由默认的百分之百,变为内容大小(尽可能小);
-top:目标元素距离视图窗口顶部 如果小于0,往上走;
-bottom:目标元素距离视图窗口底部 如果小于0;王下走;
-left:目标元素距离视图窗口左边 如果小于0,往左走;
-right:目标元素距离视图窗口右边 如果小于0,往右走;

以上就是 【position】属性的四个属性值的含义;

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值