取模与加减乘除原理,模拟实现代码及相关公式推导


计算(a + b)%N
(a + b)%N     =      (a % N + b % N) % N


计算(a - b)%N
(a - b)%N     =      (a % N - b % N) % N


计算(a * b)%N
引入x,y . x = (a % N),y = (b % N)
推导a = t1 * N + x,b  = t2 * N + y;
    (a * b) % N  
=   ((t1 * N + x) * (t2 * N + y) ) % N
=   (x * y) % N
=    ((a % N )*( b % N)) % N
(a * b) % N     =      ((a % N )*( b % N)) % N


计算(a / b) % N               
(a / b) % N = (a * power(b , N - 2) ) % N   N必须为质数!!!!

除法写成这样看会舒服一点

除法公式推导

原文链接

分享丨模运算的世界:当加减乘除遇上取模(模运算恒等式/费马小定理/组合数) - 力扣(LeetCode)

实现代码

const int N = 1e9 + 7;
long long quickPowerMod(long long base, long long exponent) {
	long long result = 1; // 初始化结果为1
	base %= N; // 先对底数取模
	while (exponent > 0) {
		if (exponent % 2 == 1) { // 如果指数是奇数
			result = (result * base) % N; // 将当前的底数乘到结果中,并取模
		}
		base = (base * base) % N; // 底数自乘,并取模
		exponent >>= 1; // 指数右移一位(相当于除以2)
	}
	return result;
}
int add(int a, int b) {
	return (a % N + b % N) % N;
}
int sub(int a, int b) {
	return add(a, -b);
}
int mul(int a, int b) {
	return ((a % N) * (b % N)) % N;
}
int divi(int a, int b) {
	return mul(a % N, quickPowerMod(b, N - 2) % N) % N;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值