敌兵布阵

敌兵布阵


Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
 

Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
 

Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
 
Sample Input
 
 
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
 

Sample Output
 
 
Case 1:
6
33
59

#include <bits/stdc++.h>
using namespace std;

const int maxn = 50100;
int n,tree[maxn];

int lowbit(int x){
    return x&(-x);
}

int getsum(int pos){
    int res = 0;
    while(pos>0){
        res += tree[pos];
        pos -= lowbit(pos);
    }
    return res;
}

void add(int pos,int num){
    while(pos <= n){
        tree[pos] += num;
        pos += lowbit(pos);
    }
}

int main(){
   	int t;
   	int kase=1;
   	scanf("%d",&t);
   	while(t--){
   		int tem,t1,t2;
   		char Q[10];
		scanf("%d",&n);
   		memset(tree,0,sizeof(tree));
   	  		
   		for(int i=1;i<=n;i++)
   		{
   			scanf("%d",&tem);
   			add(i,tem);
		}
		printf("Case %d:\n",kase++);
	 while(1){
            scanf("%s",Q);
            if(!strcmp(Q,"End"))
                break;
            scanf("%d%d",&t1,&t2);
            if(!strcmp(Q,"Query")){
                printf("%d\n",getsum(t2) - getsum(t1-1));
            }
            else if(!strcmp(Q,"Add")){
                add(t1,t2);
            }
            else{
                add(t1,-t2);
            }
        }
	   }
     return 0;
}
 

#include<stdio.h>
#include<algorithm>
#include<string.h>
 using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 55555;
int sum[maxn<<2];

void PushUP(int rt) {
	sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
//建树 
void build(int l,int r,int rt) {
	if (l == r) {
		scanf("%d",&sum[rt]);
		return ;
	}
	int m = (l + r) >> 1;
	//左右递归 
	build(lson);
	build(rson);
	//更新信息 
	PushUP(rt);
}
//单点更新 
//l,r表示当前区间,rt表示当前节点编号 
void update(int p,int add,int l,int r,int rt) {
	if (l == r) {//到叶节点更新 
		sum[rt] += add;
		return ;
	}
	int m = (l + r) >> 1;
	//根据条件判断左子树调用还是 往右 
	if (p <= m) update(p , add , lson);
	else update(p , add , rson);
	PushUP(rt);//子节点更新了,本节点也要更新 
}

/*区间更新
void Update(int L,int R,int C,int l,int r,int rt){//L,R表示操作区间,l,r表示当前节点区间,rt表示当前节点编号 
	if(L <= l && r <= R){//如果本区间完全在操作区间[L,R]以内 
		sum[rt]+=C*(r-l+1);//更新数字和,向上保持正确
		Add[rt]+=C;//增加Add标记,表示本区间的Sum正确,子区间的Sum仍需要根据Add的值来调整
		return ; 
	}
	int m=(l+r)>>1;
	PushDown(rt,m-l+1,r-m);//下推标记
	//这里判断左右子树跟[L,R]有无交集,有交集才递归 
	if(L <= m) Update(L,R,C,l,m,rt<<1);
	if(R >  m) Update(L,R,C,m+1,r,rt<<1|1); 
	PushUp(rt);//更新本节点信息 
} */
//区间查询L R表示操作区间,l r表示当前节点区间,rt代表当前节点编号 
int query(int L,int R,int l,int r,int rt) {
	if (L <= l && r <= R) {
		//在区间内,直接返回 
		return sum[rt];
	}
	int m = (l + r) >> 1;
	int ret = 0;
	if (L <= m) ret += query(L , R , lson);
	if (R > m) ret += query(L , R , rson);
	return ret;
}

int main(){
	int t,n;
	int kase=1;
	scanf("%d",&t);
		for (int kase = 1 ; kase <= t ; kase ++){
		
		printf("Case %d:\n",kase);
		
		scanf("%d",&n);
		 build(1,n,1);
		 char op[10];
		 while(1){
		 	scanf("%s",op);
		 
		 	if(!strcmp(op,"End"))
		 	break;
		 	else {
		 		
		 		int t1,t2;
		 	scanf("%d%d",&t1,&t2);
		 	if(op[0]=='Q')
		 	{
		 	printf("%d\n",query(t1,t2,1,n,1));	
			 }
			 else if(op[0]=='A')
			 {
			 	update(t1,t2,1,n,1);
			 }
			 else  update(t1,-t2,1,n,1);
			 }
		 }
	}	
	
	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值