Python深度学习入门:从机器学习到神经网络
一、机器学习概述
在当今数字化时代,机器学习(ML)技术广泛应用于各个领域,数据科学家也成为众多行业的热门人才。机器学习能够帮助我们从数据中挖掘不易察觉的知识,从而做出决策。其应用场景丰富多样,涵盖医学、金融和广告等多个领域。
-
机器学习与大数据、人工智能的关系
- 大数据 :大数据指的是由于数据收集和存储量大幅增加而产生的庞大数据集。例如,谷歌每天处理超过20PB的信息,且这个数字还在不断增长。人类难以理解和分析如此海量的数据,而机器学习技术则是处理大规模数据的有效工具。它适用于具有大量变量和特征的复杂数据集,许多机器学习技术,尤其是深度学习,在处理大规模数据集时表现出色,能够发现数据中隐藏的模式和规律,从而提升分析和预测能力。
- 人工智能 :人工智能可以定义为能够与环境进行交互的系统。人工智能机器配备了传感器以了解周围环境,并具备与环境进行交互的工具。机器学习则是人工智能系统的核心,它使机器能够分析通过传感器获取的数据,并给出合适的响应。例如,iPhone上的Siri通过麦克风接收指令,并通过扬声器或显示屏输出答案,这就需要机器学习来理解用户的指令。同样,无人驾驶汽车配备了摄像头、GPS系统、声纳和激光雷达等设备,这些设备收集的信息需要通过机器学习进行处理,以决定是否加速、刹车或转弯。
- 深度学习 :深度学习是机器学习的一个子领域,其方法具有一些特殊的共同特征,最具代表性的是深度神经网络。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



