简介
在Python提供了多个模块支持多线程编程,包括thread,threading和Queue模块等,推荐使用threading
threading模块对象
对象 | 描述 |
---|---|
Thread | 表示一个执行线程的对象 |
Lock | 锁原语对象 |
RLock | 可重入锁对象,使单一线程可以(再次)获得已持有的锁(递归锁) |
Condition | 条件变量对象,使得一个线程等待另一个线程满足特定的“条件”,比如改变状态或某个数据值 |
Event | 条件变量的通用版本,任意数量的线程等待某个事件的发生,在该事件发生后所有线程将被激活 |
Semaphore | 为线程间共享的有限资源提供了一个“计数器”,如果没有可用资源时会被阻塞 |
BoundedSemaphore | 与 Semaphore 相似,不过它不允许超过初始值 |
Timer | 与 Thread 相似,不过它要在运行前等待一段时间 |
Barrier | 创建一个障碍,必须达到指定数量的线程才可以继续 |
Thread类属性和方法
Thread 对象数据属性
Thread 对象数据属性 | 描述 |
---|---|
name | 线程名 |
ident | 线程的标识符 |
daemon | 布尔标志,表示这个线程是否是守护线程 |
Thread 对象方法
Thread 对象方法 | 描述 |
---|---|
__init__(group=None, tatget=None,args=(), kwargs ={}, verbose=None, daemon=None) | 实例化一个线程对象,需要有一个可调用的 target,以及其参数 args或 kwargs。还可以传递 name 或 group 参数,不过后者还未实现。此外 , verbose 标 志 也 是 可 接 受 的。 而 daemon 的 值 将 会 设定thread.daemon 属性/标志 |
start() | 开始执行该线程 |
run() | 定义线程功能的方法(通常在子类中被应用开发者重写) |
join (timeout=None) | 直至启动的线程终止之前一直挂起;除非给出了 timeout(秒),否则会一直阻塞 |
getName() | 返回线程名 |
setName (name) | 设定线程名 |
isAlivel /is_alive () | 布尔标志,表示这个线程是否还存活 |
isDaemon() | 如果是守护线程,则返回 True;否则,返回 False |
setDaemon(daemonic) | 把线程的守护标志设定为布尔值 daemonic(必须在线程 start()之前调用) |
示例1:创建Thread实例,传递函数
import threading
import time
def read():
for x in range(3):
print('在%s,正在读书' % time.ctime())
time.sleep(1)
def write():
for x in range(3):
print('在%s,正在写字' % time.ctime())
time.sleep(1)
def main():
read_threads = [] # 用来存放执行read函数线程的列表
write_threads = [] # 用来存放执行write函数线程的列表
for i in range(1,2): # 创建1个线程用于read(),并添加到read_threads列表
t = threading.Thread(target=read) # 执行的函数如果需要传递参数,threading.Thread(target=函数名,args=(参数,逗号隔开))
read_threads.append(t)
for i in range(1,2): # 创建1个线程执行write(),并添加到write_threads列表
t = threading.Thread(target=write) # 执行的函数如果需要传递参数,threading.Thread(target=函数名,args=(参数,逗号隔开))
write_threads.append(t)
for i in range(0,1): # 启动存放在read_threads和write_threads列表中的线程
read_threads[i].start()
write_threads[i].start()
if __name__ == '__main__':
main()
运行结果
示例2:为了让线程更好的封装,可以用threading模块下的Thread类,继承这个类,然后实现run方法,线程就回自动运行run方法中的代码
import threading
import time
class read_thread(threading.Thread):
def run(self):
for x in range(3):
print('在%s,正在读书(当前线程:%s)' % (time.ctime(),threading.current_thread()))
time.sleep(1)
class write_thread(threading.Thread):
def run(self):
for x in range(3):
print('在%s,正在写字(当前线程:%s)' % (time.ctime(),threading.current_thread()))
time.sleep(1)
def main():
read_threads = [] # 用来存放执行read函数线程的列表
write_threads = [] # 用来存放执行write函数线程的列表
for i in range(1,2): # 创建1个线程用于read(),并添加到read_threads列表
t = read_thread() # 创建实例存放
read_threads.append(t)
for i in range(1,2): # 创建1个线程执行write(),并添加到write_threads列表
t = write_thread()
write_threads.append(t)
for i in range(0,1): # 启动存放在read_threads和write_threads列表中的线程
read_threads[i].start()
write_threads[i].start()
if __name__ == '__main__':
main()
运行结果:
Lock对象
多线程是在同一个进程下运行的,因此在进程中的全局变量所有线程都是共享的,这就造成一个问题,因为线程执行的顺序是无序的,有可能会造成数据错误,如下面的函数
import threading
value = 0
def add_value():
global value
for x in range(10000000):
value += 1
print('value:',value)
def main():
threads = []
for i in range(0,2):
t = threading.Thread(target=add_value)
threads.append(t)
for i in range(0,2):
threads[i].start()
if __name__ == '__main__':
main()
这时候运行结果为
这个结果显然是不对的,这就是因为全局变量是共享的,线程运行又是无序的,而且value+1的命令次数变多,就会2个线程可能同时执行+1这时候数据就很容易发生混乱。
接下来引入锁机制
LOCK 对象方法
锁有两种状态:锁定和未锁定。而且也只有两个函数;获取锁和释放锁,当多线程争夺锁的时候,允许第一个获得锁的线程进入临界区,并执行代码,所有之后叨叨的线程都被阻塞,当第一个线程执行结束,退出临界区,释放锁,此时,其他等待的线程可以获得锁进入临界区,不过要记住,被阻塞的线程是无序的。
LOCK 对象方法 | 描述 |
---|---|
acquire() | 获取锁(阻塞或非阻塞) |
release() | 释放锁 |
示例:
import threading
value = 0
lock = threading.Lock() # 创建锁示例
def add_value():
global value
lock.acquire() # 获得锁
for x in range(10000000):
value += 1
lock.release() # 释放锁
print('value:',value)
def main():
threads = []
for i in range(0,2):
t = threading.Thread(target=add_value)
threads.append(t)
for i in range(0,2):
threads[i].start()
if __name__ == '__main__':
main()
现在就运行正常了
Condition对象
LOCK锁机制存在一个问题,上锁是一个很耗费CPU资源的行为,这时候就可以考虑使用Condition对象,threading.Condition()
可以再没有数据的时候处于阻塞等待状态,一旦有合适的数据,还可以使用notify相关的函数来通知其他处于等待状态的线程,这样就可以不用做一些无用的上锁和解锁操作,可以提高程序的性能
Condition对象方法 | 描述 |
---|---|
acquire() | 获取锁 |
release() | 释放锁 |
wait() | 将当前线程处于等待状态,并释放锁。可以被其他线程使用notify和notify_all函数唤醒,被唤醒后会继续等待上锁,上锁后继续执行下面代码 |
notify() | 通知正在等待的某个线程,默认是第一个等待的线程 |
nofity_all() | 通知所有正在等待的线程,notify和nofify_all不会释放锁,并且需要在release()之前调用 |
示例代码:
创建两个类,Producer用于赚钱,并且规定每个线程只需要工作10次即可,Consumer用于消费。
Consumer每次花钱的时候会看一下金库的总额够不够,如果不够就会调用gCondition.wait()
将线程处于等待,当Producer赚钱了,就会调用gCondition.notify_all()
,提醒真正等待的线程,当线程被唤醒之后会继续等待上锁,上锁后继续执行下面代码
import time
import threading
import random
gMoney = 1000
gCondition = threading.Condition()
gTotalTimes = 10
gTimes = 0
class Producer(threading.Thread):
def run(self):
global gMoney
global gTimes
while True:
money = random.randint(100,1000)
gCondition.acquire()
if gTimes >= gTotalTimes:
gCondition.release()
break
gMoney += money
print("%s生产者生产了%d元,总额%d元" % (threading.current_thread(), money, gMoney))
gTimes +=1
gCondition.notify_all()
gCondition.release()
time.sleep(0.5)
class Consumer(threading.Thread):
def run(self):
global gMoney
while True:
price = random.randint(500,1000)
gCondition.acquire()
while gMoney < price:
if gTimes>= gTotalTimes:
gCondition.release()
return
print('%s消费者准备消费%d,剩余%d,不足!' % (threading.current_thread(), price, gMoney))
gCondition.wait()
gMoney -= price
print('%s消费者消费了%d元,剩余%d' % (threading.current_thread(),price,gMoney))
gCondition.release()
time.sleep(0.5)
def main():
for x in range(3):
t = Consumer(name='消费者线程%d'%x)
t.start()
for x in range(5):
t = Producer(name = '生产者线程%d'%x )
t.start()
if __name__ == '__main__':
main()
参考链接: