Flink系列-7、Flink DataSet—Sink&广播变量&分布式缓存&累加器

本文介绍了ApacheFlink中的数据输出方式,包括基于本地集合和文件的DataSinks,以及如何使用广播变量和累加器进行优化。广播变量用于减少shuffle操作,提高性能,而Accumulators用于监控任务运行期间的数据变化。此外,还讲解了Flink的分布式缓存,用于共享静态数据。
摘要由CSDN通过智能技术生成

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

大数据系列文章目录

官方网址https://flink.apache.org/

学习资料https://flink-learning.org.cn/
在这里插入图片描述

数据输出Data Sinks

flink在批处理中常见的sink

  • 基于本地集合的sink(Collection-based-sink)
  • 基于文件的sink(File-based-sink)

您好!对于使用Flink SQL将数据流写入文件系统,您可以通过以下步骤来实现: 1. 导入所需的依赖项 首先,您需要在您的项目中添加Flink SQL和所选文件系统的相关依赖项。例如,如果您想将数据写入HDFS文件系统,您需要添加相关的Hadoop依赖项。 2. 创建一个Flink StreamTableEnvironment 通过创建一个Flink StreamTableEnvironment,您可以使用Flink SQL来处理和操作流数据。 ```java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env); ``` 3. 定义输入表和输出表 您需要定义一个输入表和一个输出表,以便在Flink SQL中引用它们。 ```java tableEnv.executeSql("CREATE TABLE inputTable (field1 INT, field2 STRING) WITH (...)"); tableEnv.executeSql("CREATE TABLE outputTable (field1 INT, field2 STRING) WITH (...)"); ``` 在上述代码中,您需要根据实际情况替换`WITH (...)`部分,并根据您的输入数据源和输出目标进行配置。 4. 将数据流写入输出表 使用Flink SQL的INSERT INTO语句,您可以将数据从输入表写入输出表。 ```java tableEnv.executeSql("INSERT INTO outputTable SELECT * FROM inputTable"); ``` 在上述代码中,我们使用SELECT *从输入表中选择所有字段,并将其插入输出表中。 5. 执行Flink程序 最后,使用`env.execute()`来触发Flink程序的执行。 ```java env.execute(); ``` 这将启动Flink作业并开始将数据流写入文件系统。 请注意,上述步骤是一个简单的示例,您需要根据实际情况进行适当的配置和调整。另外,根据您选择的文件系统,可能还需要进行额外的配置和设置。 希望以上信息对您有所帮助!如有任何进一步的问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术武器库

一句真诚的谢谢,胜过千言万语

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值